array(2) { ["lab"]=> string(3) "979" ["publication"]=> string(5) "13185" } Response of Sugarcane Rhizosphere Bacterial Community to Drought Stress - 甘蔗根系与微生物互作研究小组 | LabXing

甘蔗根系与微生物互作研究小组

简介 甘蔗根系发育与根际益生微生物互作

分享到

Response of Sugarcane Rhizosphere Bacterial Community to Drought Stress

2021
期刊 Frontiers in Microbiology
下载全文
Sugarcane is an important sugar and energy crop, and its yield is greatly affected by drought. Although a large number of studies have shown that rhizosphere microorganisms can help improve the adaptability of plants to biotic or abiotic stresses, there is a lack of studies on the adaptability of sugarcane rhizosphere microbial communities to host plants. Therefore, we conducted drought stress treatment and normal irrigation treatment on three sugarcane varieties GT21, GT31, and GT42 widely cultivated in Guangxi. Using 16S rDNA sequencing technology to analyze the changes in abundance of the sugarcane rhizosphere bacterial community under different treatments, combined with the determination of soil enzyme activity, soil nutrient content, and sugarcane physiological characteristics, we explored the sugarcane rhizosphere bacterial community response to drought stress. In addition, we used the structural equation model to verify the response path of sugarcane rhizosphere bacteria. The results show that the bacterial community structure in the rhizosphere of sugarcane is stable under normal water conditions. The change in the bacterial community structure under drought stress has a 25.2% correlation with the drought adaptability of sugarcane, but the correlation with drought stress is as high as 42.17%. The changes in abundance of rhizosphere bacteria under drought stress are mainly concentrated in the phylum Rhizobiales and Streptomycetales. This change is directly related to the physiological state of the host plant under drought stress, soil available phosphorus, soil urease and soil acid protease. We investigated the response species of rhizosphere microorganisms and their response pathways under drought stress, providing a scientific basis for rhizosphere microorganisms to assist host plants to improve drought adaptability.