
ABSTRACT 

This work exploits the basic denoising autoencoding (DAE) as 

enhanced priori for color image restoration (IR). The proposed 

method consists of two steps: enhanced DAE network learning 

and iterative restoration. To be special, at the training phase, a 

denoising network taking 6-dimensional variable as input is 

trained. Then, the network-driven high-dimensional prior in-

formation embedded DAE priori is utilized in the iterative 

restoration procedure. We first map the intermediate color 

image to be 6-dimensional and employ the higher-dimensional 

network to handle its corrupted version. The average operator is 

used to turn it back to the 3-channel image. The high-

er-dimensional prior alleviates the issue of the basic DAE that 

getting trapped in local optimal solution and effectively over-

comes the instability. Experimental results on single image 

super-restoration (SISR) and deblurring demonstrate that the 

proposed algorithm can achieve good performance and prime 

visual inspection.  

Index Terms—Color image restoration, denoising autoencoding, 

higher-dimensional embedding, SISR, deblurring 

1. INTRODUCTION 

Image restoration (IR), which aims to recover high quality 

images from its degraded measurement, has always been a 

research hot spot in image processing [1-18]. The mathematical 

definition of IR can be formulated as: 

f Hu n= +                                      (1) 

where f  denotes a corrupted image, u  denotes a clean image, 

H represents a degradation matrix associated with the imaging 

system, and n  is additive white Gaussian noise with standard 

deviation σ . For different degradation matrices, we can obtain 

different IR tasks accordingly. Two traditional IR tasks would 

be single image super-resolution (SISR) [1] when H is a 

composite operator of blurring and down-sampling, image 

deblurring [8] when H is a blurring matrix/operator. Because 

of the ill-posed essence of IR, the regularization-based tech-

niques have been extensively studied by regularizing the solu-

tion spaces [1, 2, 4]. From a Bayesian viewpoint, the solution û  

is obtained by dealing with a Maximum A Posteriori (MAP) 

issue,  
2ˆ argmin || || ( )

u
u Hu f λφ u= − +                       (2) 
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where ( )φ u is the regularizer connected with prior knowledge. 

The fidelity term 2|| ||Hu f−  ensures that the solution conforms 

to the degradation process. λ  is an adjusted parameter. 

In general, the solution to tackle Eq. (2) can be divided into 

two categories, namely model-based optimization method 

[1-18, 19-21] and discriminative learning method [22-27]. In 

the circumstances of the color IR, the classic algorithm is the 

kind of total variation (TV). For instance, Blomgr et al. [2] 

proposed total variation norm for vector valued functions ap-

plied to restore color image. A significant improvement has 

been made in which adaptive dictionary learning and sparse 

representation are applied in nonlocally extracted image 

patches of color images [4-11]. Dabov et al. [11] proposed the 

well-known block-matching and 3-D filter (BM3D) method for 

image denoising based on sparse representation in transform 

domain and a specially developed collaborative Wiener filter-

ing. As an advanced formulation of the sparse representation, 

the structural sparse representation like low-rank prior is also 

exploited to color IR [12-16]. Gu et al. [13] studied the 

weighted nuclear norm minimization (WNNM) problem by 

exploiting the image non-local self-similarity, where the sin-

gular values were assigned different weights. Zhao et al. [15] 

proposed an adaptive clustering method and an adaptive rule 

for thresholding in PCA domain.  

Nowadays, many deep learning-based SISR methods have 

been proposed, which aim to directly learn mappings from 

low-resolution (LR) patches to high resolution (HR) [22-27]. 

The SRCNN proposed by Dong et al. [22] used a three-layer 

network to learn the end-to-end mapping between LR images 

and HR images and has achieved real-time application speed. 

Wang et al. [23] proposed to combine the key ingredients of 

deep learning with the conventional sparse coding, and then 

they designed a neural network model for SISR. The VDSR 

method proposed by Kim et al. [25] adopted the residu-

al-learning to explore contextual information over the large 

image regions. 

In [19], denoising autoencoders network [28] as priors 

(DAEP) was developed to address various IR problems. A key 

advantage is that it just trains a single network for different IR 

tasks including deblurring with different kernels and su-

per-resolution at different magnification factors. Although 

DAEP trained for a denoising instance can be used for remov-

ing different degradations, the output of the network is unstable 

at the same conditions and is prone to be trapped in locally 

optimal solutions. There is a large room in enhancing network 

representation with priors for performance improvement.  
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  In this work, we explore the central idea of similarity sam-

ples clustering and aggregation strategy applied in the context 

of convolutional features learning and testing for color IR tasks. 

More specifically, built on the observation that optimally 

trained DAEP can provide good performance for image pro-

cessing, we adopt a multi-channels and multi-models version of 

DAEP, termed M2DAEP.  

2. PROPOSED M2DAEP 

In this section, we present the 6D and multi-models derived 

M2DAEP in details. First, we train the DAE network with in-

put-output pair sample to be 6-channel image, consisting of the 

original color image and its copy version. Second, by means of 

auxiliary variable augmentation and average techniques, we use 

the resulting network-driven higher-dimensional prior to solve 

the color IR problem. Additionally, like in [19], multi-models 

scheme including employing different levels and different 

implementations of generating noises is put forward. Finally, 

with regard to the resulting IR mathematical model, proximal 

gradient method is adopted. 

2.1. Motivation  

In many non-local patch-based approaches, there usually con-

sist of three steps: patch matching/clustering, sparsity or 

low-rank modeling as a regularizer, and patch 

weighted/aggregation modeling [4-15]. As shown in Fig. 1(a), 

the patch matching procedure enables multi-patches with sim-

ilar structural patterns to be found and grouped. Meanwhile, 

patch aggregation strategy applied on the clustered patches can 

achieve better restoration. These two procedures play the role 

of converting pixel domain to patch domain and returning the 

restored results in patch domain to pixel domain, respectively. 
 

Denoising

Denoising

Denoising

Denoising

 Noisy

 Overlapping Small Patches  Processed

 Denoised

Aggregation

 
(a) 

 

Prior  gradient

Trained 

DAEP model

ku 1ku +
Mean

Prior information

 updating

kI noise+

...

 
(b) 

Fig. 1. Visual illustrations of patch-based approach and M2DEAP. (a) Matrix 

operator in clustered patches for image denoising. (b) Convolution operator in 
multi-channel image features at iterative procedure of M2EDAP.  
 

Inspired by the central idea existed in the patch-based 

models, we adopt a 6-dimensional and multi-models version of 

DAEP for the color IR. Visual illustration of employing 

high-dimensional prior at iterative procedure in M2DAEP is 

shown in Fig. 1(b). By mapping 3-channel image to be 

6-channel via copy operator, we train a network taking 

6-channel as input. After higher-dimensional denoising pro-

cedure, we use average operator to attain the solution.  

In summary, in this work we use 6 channel image infor-

mation as input and output samples to train DAE network, and 

obtain high dimensional priori information to solve the color IR 

tasks. More details of the training and testing phases of our 

M2DAEP will be elaborated in the next two subsections. The 

proposed M2DAEP involves two characteristics: (i) learns 

some prior information in higher-dimension space rather than 

the original space, and (ii) incorporates the higher-dimensional 

prior into the iterative restoration procedure for handling the 

original IR problem.  

2.2. Proposed Training Model  

At the prior learning stage, we train a 6-channel network from 

data pairs consisting of the 6-dimensional image (i.e., the 

original and its copy) and the noisy version. Accordingly, the 

M2DAEP prior containing DAE  ( )


A I  is denoted as: 

2

2

, [ ( ) ] 
 −= IM EDA

L IE A I                      (3) 

where the training data is a set of 6-dimensional images

1{ | ( ) [ , ]}I I u u u= . ( ) ( )


= +A I A I  and   with standard 

deviation 
  is the artificial noise. The copy 

1u  of u  is an 

auxiliary variable that accounts to map the 3-channel color 

image to be 6-channel. The auxiliary variable augmentation 

technique was also adopted in deep learning-based col-

or-to-gray conversion [29]. 

The network architecture used for learning a DAE in this 

work is the residual encoder-decoder network (RED-Net) [27], 

as shown in Fig. 2. The RED-Net network consists of 20 layers, 

including 10 convolutional and 10 deconvolutional layers 

symmetrically arranged. Shortcuts connect matching convolu-

tional and deconvolutional layers. Each layer is followed by its 

rectified linear units (ReLU). The convolution kernels are of 

size 3×3. The channel number at input and output layers is 6, 

and at the rest of the layers is 64. 

The R, G, B channels in natural color images inherently in-

volve some channel priors, the joint learning of the 6-channel 

data exhibits some structural information. In color IR task, we 

apply auxiliary variables technique to obtain the six-channel 

network induced high-dimensional structural prior information. 

This partly gives the rationality that the representation ability of 

M2DAEP will be better than DAEP. In fact, there already exist 

many color IR works that utilize the channel priors in color 

images to enhance the restoration process [5, 17]. The utmost 

innovation here is that we learn prior information from 6D 

images and use it in color IR tasks.  
 

Convolution Deconvolution

     

Fig. 2. The flowchart of training the 6-channel network in M2EDAP. 

2.3. Proposed IR Solver  

Considering the 6D and multi-models ( 2N = ), the general 

mathematical model for color IR can be derived as follows: 
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2
2

1

min ( ) ( ( ))
i

N

u
i

Hu f I u A I u
N 





=

− + −          (4) 

For the sake of convenience, the 6-channel auxiliary varia-

bles 
1( ) [ , ]I u u u=  are simply termed as I . N stands for the 

number of M2DAEP model. The first term is the data-fidelity 

term, and the second term consists of the network-driven prior 

information. Due to the nonlinearity of the model, we apply the 

proximal gradient method to tackle it [30]. The model is 

approximated by standard least square (LS) minimization:  

 
22

1

(min ( ))k k

i

N

u
i

H f I
N

u G II 




=

− −+ −       (5) 

where 2

( ) ( )
i

iG I A II


−= and ( ) [ ( )][ ( )]1
i i

T

i IG I A I A II
   = − − . 

The function ( )G I  is 1  -Lipschitz smooth, i.e., 

' '' ' ''

2 2
( ) ( )G I G I I I  −  − . k denotes the index number of 

iterations. Here, we empirically set  =1 and it works well in 

our experiments.  
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Fig. 3. The flowchart of employing the learned M2EDAP to SISR application. Notice that multi-channels and multi-models is ultilized. 6-channal image is obtained 

by copying the original color image. Additionally, 6-channel networks implemeted at noise level 11 2  and 25 2  are simulateously used.  
 

 

Given 1 = , Eq. (5) is a standard LS problem, which can be 

solved by calculating the gradient as follows: 

1

(

1
{ ( )( ( ) ) ( )]} 0

)

[
i i i

T

N
T k k k k

i

I

H

I

f

I

Hu

A A I A I
N

I
    

=

+

+ −

−

 − =
    (6) 

 and it yields: 

1 1

[{ ( ) ( )[ ( ) ]}]

( )

i i i

N
T k T k

I

k k

k i

T

H f R A I A I A I
N

u
H H

I
    





+ =

+ −

=
+

−
 (7) 

where R stands for the mean operator employed on the six 

channels. It can be observed that the solution formulation 

contains ( )
i

kA I


 and ( )[ ( ) ]
i iI

T k k kA I A II
   − , where the 

parameters ( )
i

A


 are already learned at the network training 

stage. In particular, the ( )
i

kA I


 is the forward output with the 

input kI + . ( )[ ( ) ]
i iI

T k k kA I A II
   − is the backward 

network output with the input ( )
i

k kA I I


− . Additionally, we 

update the solution ku  by alternately updating the network 

estimation ( )
i

kA I


, ( )
i

T k

I A I


  and the LS solver until the u

value convergences. In brief, the mathematical model is tackled 

by the proximal gradient and alternative optimization. 

The flowchart for illustrating the M2DAEP training stage is 

shown in Fig. 3. In summary, the overall training phase and 

testing phase of M2DAEP algorithm are as follows: 

Algorithm: M2DEAP 

Training stage 

Training images: 6-dimensional dataset 
1{ | ( ) [ , ]}I I u u u=  

Network: 6-channel DAE network  

Outputs: Trained network 
1
(o)A


 and 

2
(o)A


  

Testing stage 

Initialization: 0 Tu H f= ; K ; 2N =  

For 1,  2,  ,  k K=   

Update the auxiliary variable: 
1[ , ]k k kI u u=  

Calculate the prior gradient components: 

( )
i

kA I


, ( )[ ( ) ]
i iI

T k k kA I A II
   − ; 1,2, ,i N=  

Update the solution via solving the LS problem: 

1 1

[{ ( ) ( )[ ( ) ]}]

( )

i i i

N
T k T k

I

k k

k i

T

H f R A I A I A I
N

u
H H

I
    





+ =

+ −

=
+

−

End 

3. EXPERIMENTAL RESULTS 

In this section, the performance of M2DAEP is evaluated for 

SISR and image deblurring. We implemented the proposed 

architecture in MATLAB on a PC equipped with Inter(R) Core 

(TM) i7-7700 CPU and GeForce Titan XP. Our training set use 

400 images of 180 180 and set the training patch size as 

40 40 . Image patches with different noise levels were used to 

train models for learning a mapping from noisy images to de-

noising results. To evaluate the quality of the restoration image, 
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PSNR (Peak Signal to Noise Ratio, dB) is calculated. The 

higher PSNR values mean that retaining the more structures 

with better visual quality. For the convenience of reproducible 

research, codes source code of M2DAEP is available at: 

https://github.com/yqx7150/M2DAEP. 

3.1. Single image Super-Resolution (SISR) 

We compared our method with the recent techniques, including 

SRCNN [25], TNRD [31], DnCNN-3 [24], IRCNN [32], 

DMSP [20], SRMD [26] and DAEP [19], where the networks 

of SRCNN, TNRD, and SRMD were trained separately for 

each scale factor, however, the DnCNN-3 and IRCNN models 

were trained jointly on ×2, 3 and 4. Specifically, for the su-

per-resolution under scale ×5, we used the SRCNN and TNRD 

models trained on ×4, and the DnCNN-3 and IRCNN models 

trained jointly on ×2, ×3 and ×4.  

Table 1 shows the performance of above different methods 

on Set 5 for varying scale factors. It can be seen that M2DAEP 

achieves higher PSNR results, except for SRMD. More im-

portantly, M2DAEP gains higher PSNR values than our pre-

vious DAEP [19], implying that the quality of DAEP is sig-

nificantly improved by embedding higher-dimensional struc-

ture. Fig. 4 depicts some visual inspections.  

 
Fig. 4. Comparison of super-resolution on image “Butterfly” in Set 5 for scale 
×3 with the corresponding PSNR (dB) values. From top to bottom and left to 

right: SRCNN, DnCNN-3, IRCNN, DMSP, SRMD, DAEP and M2DAEP. 

 

Table 1. Average PSNR (dB) of different methods on Set 5 for the different scale factors. 

 

3.2. Image Deblurring 

In deblurring experiment, a blur kernels with 35 25 size is 

selected as the degrading operator. Four color images in Fig. 5 

were tested to verify the performance of the proposed M2DAEP 

method with comparison EPLL framework [12], DMSP [20] 

and DAEP [19]. The PSNR values recorded in Table 2 indicate 

that M2DAEP achieves the highest values for almost images. 

Visual quality comparison of image deblurring at varying 

Gaussian noise level for the color images “Lena” with size of 

256 256  is shown in Fig. 6. It can be observed that the DAEP 

method can remove noise very well while the image is still 

blurry. In additional, the EPLL method can well reconstruct the 

piecewise smooth regions but often fails to recover fine image 

details. Finally, the DMSP and DAEP can outperform the 

EPLL largely. Particularly, DMSP and M2DAEP methods not 

only can remove noise but also preserve the structure details. 

Moreover, the proposed M2DAEP produces cleaner and sharper 

image edges and textures than other competing methods. 

4. CONCLUSIONS 

This work paved a new way to incorporate higher-dimensional 

prior information into color IR applications. Specifically, a 

6-channel denoising autoencoder prior was presented, which 

built on the assumption that an optimal denoising autoencoder 

is a local mean of the correct data density. In particular, auxil-

iary variables technique was applied to integrate high-

er-dimensional structural information. The formulated math-

ematic model was tackled by proximal gradient and alternative 

optimization. Both qualitative and quantitative results on SISR 

and image deblurring demonstrated that M2DAEP achieves 

performance improvements over state-of-the-art methods.  

 
Fig. 5. The photographic images. Barbara, Butterfly, House and Lena. 
 

Table 2. The deblurring performance (PSNR) on four images.  
 

Noisy image EPLL DMSP DAEP M2DAEP 

7.65 

Barbara 20.10 21.23 20.66 21.10 

Butterfly 19.03 20.18 25.45 26.97 

House 24.05 25.45 25.47 29.01 

Lena 23.56 26.97 27.37 28.68 

Average 21.69 23.45 24.47 26.07 

12.75 

Barbara 19.59 20.21 19.33 19.54 

Butterfly 18.81 19.52 22.68 23.47 

House 22.57 26.25 24.74 28.54 

Lena 24.91 24.25 25.94 27.45 

Average 21.47 22.56 23.17 24.75 

 

 
Fig. 6. Visual comparison of image deblurring. Top line: image “Barbara” 

under noise level of 7.65. Bottom line: image “Lena” under noise level of 12.75. 

Results obtained by EPLL, DMSP, DAEP and M2DAEP. 

Scale Dataset Bicubic SRCNN TNRD DnCNN-3 IRCNN DMSP SRMD DAEP MDAEP M2DAEP 

2  

Set 5 

31.80 34.50 34.62 35.20 35.07 35.16 35.28 35.23 35.41 35.48 

3  28.67 30.84 31.08 31.58 31.25 31.38 31.84 31.44 31.68 31.75 

4  26.73 28.60 28.83 29.30 29.00 29.14 29.64 29.01 29.25 29.44 

5  25.32 26.12 26.88 26.30 27.13 27.35 - 27.19 27.40 27.59 
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