
  Abstract—Registration of images from different modal-
ities in the presence of intra-image fluctuation and noise 
contamination is a challenging task. The accuracy and ro-
bustness of the deformable registration largely depend on 
the definition of appropriate objective function, measuring 
the similarity between the images. Among them the mul-
ti-dimensional modality independent neighbourhood de-
scriptor (MIND) is a promising method, yet its ability is 
limited by non-uniform bias fields and image noise, etc. 
Motivated by the fact that Log-Euclidean metric has 
promising invariance properties such as inversion invari-
ant and similarity invariant, this paper introduces an ob-
jective function that embeds Log-Euclidean similarity 
metric between patches to form a multi-dimensional de-
scriptor. The Gaussian-like penalty function consisting of 
the log-Euclidean metric between images to be registered is 
incorporated to better reflect the degree of preserving 
feature discriminability and structure ordering. Experi-
mental results show the advantages of the proposed method 
over state-of-the-art techniques both quantitatively and 
qualitatively. 

Index Terms—Multi-modal images, deformable regis-
tration, Log-Euclidean metric, Image gradients, MIND. 

I. INTRODUCTION

Compared to the advances resulted in a variety of robust and 
accurate methods for deformable registration techniques for 
scans of the same modality, the registration of images from 
different modalities remains a challenging task [1]. The de-
formation between multi-modal images describes how pixels 
move from a reference to a target image, which is a rich source 
of information for the image analysis. A good registration is 
beneficial for various applications such as computer-assisted 
surgery and disease analysis [2, 3], etc. Specifically, the regis-
tration of magnetic resonance imaging (MRI), computed to-
mography (CT) and positron emission tomography (PET) is 
very common, since combining different anatomical and func-
tional information about the human body is indeed helpful for 
clinicians. 
     Due to the different physical phenomena that are measured 
by the different modalities, there is no functional relation be-
tween the intensity mapping of corresponding anatomies. The 
classical intensity metrics used in mono-modality such as 
sum-of-squared-differences (SSD) is not applicable. Since the 
local intensity of different modalities is exactly different, an 
alternative way to describe the invariance between the aligned 
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objects is to explore their relation in global or non-local way 
such that the resulting quantity to be modality independent [1, 
4, 5]. Specifically, Mutual information (MI) is the popularly 
used information theoretical algorithm that globally describe 
the correlation between the reference and images to be regis-
tered. MI aims to find a statistical intensity relationship across 
images and thereby maximizes the amount of shared infor-
mation between two images. The main disadvantage is that MI 
is intrinsically a global measure and therefore its local estima-
tion is difficult, which can lead to many false local optima in 
non-rigid registration. Hence some modality independent local 
quantity has been proposed to complementarily improve the 
alignment such as local phase, gradient orientation and multi 
features [6-15]. Pluim suggested integrating the gradient mag-
nitude and orientation values into the MI measure [8]. Beijing 
used higher order MI [9] to include a range of other properties 
such as mean and median values of a pixel neighbourhood, 
different neighbouring pixels (left and right neighbours) and 
also a gradient value. Kubecka suggested using gradient-image 
MI, where MI is computed for both the original images (after 
performing illumination correction) and also for the corre-
sponding gradient images [10]. Legg et al. incorporated mul-
ti-scale feature derivatives along with spatial neighbourhood 
knowledge into a MI framework. It consists of firstly compu-
ting the features from the fixed and moving images and then 
combining these together in a MI framework [11]. 
    Structural image representation is another class of widely 
used approaches. Modality independent neighbourhood de-
scriptor (MIND) assigns each pixel a structural vector that 
describes the central pixel in a local/nonlocal way [16-18]. 
Wachinger and Navab [19] proposed the entropy image and 
Laplacian eigenmaps based structural representation methods 
for image registration. In the first method, the entropy of the 
image patches was calculated and the entropy images based 
SSD was used as the similarity metric. A shortcoming is that 
the entropy images seem to be blurry, and it is sensitive to noise 
when calculating the histogram over small patches. In the 
second method, all the image patches were utilized to build a 
neighborhood graph to approximate the manifold embedded in 
high dimensional patch space. The low-dimensional embed-
ding was then calculated with the graph Laplacian. Embeddings 
from different modalities were aligned to obtain the final rep-
resentation. Yet the Laplacian images seem to be sensitive to 
noise in the image and their calculation involves high compu-
tational complexity. Piella [20] used the diffusion maps to 
obtain a unified representation that captures the geometric and 
spectral properties of the data for the multi-modal registration. 
This method can represent the complicated image features, but 
it is computationally intensive and sensitive to image noise. 
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    The main contribution of this paper is to propose a new 
descriptor termed MIND-LeM, which exploits the 
Log-Euclidean metric for matrices containing local feature 
correlations. We approximate this descriptor by applying 
Log-Euclidean distance between Gaussian smoothed patches in 
a large local neighbor of image gradients domain, thereafter 
forming the multi-dimensional similarity metric. The remain-
der of this paper is organized as follows: After reviewing some 
knowledge of Log-Euclidean metric In Section II, Section III 
introduces a new Log-Euclidean based modality independent 
neighborhood descriptor. Subsequently, Section IV demon-
strates the performance of the proposed algorithm. Finally, 
conclusions and discussions are given in Section V. 

II. REVIEW OF LOG-EUCLIDEAN METRICS

In this section, we briefly review the Log-Euclidean distance
and its Gaussian kernels. The space of d d  Symmetric Posi-

tive Definite (SPD) matrices, dSym , is widely studied when 

endowed with a Riemannian metric and thus forms a Rie-
mannian manifold [21, 23]. In such cases, the geodesic distance 
induced by the Riemannian metric is a more natural measure of 
dissimilarity between two SPD matrices than the Euclidean 
distance. Log-Euclidean distance [22] is the most widely used 
distance measure, due to the fact that it is a true geodesic dis-
tance induced by Riemannian metrics.  

  The log-Euclidean distance for dSym is derived by exploit-

ing the Lie group structure of dSym under the group operation 

: exp(log( ) log( ))i j i jQ Q Q Q  for ,  i jQ Q  dSym where 

exp(·) and log(·) denote the usual matrix exponential and loga-
rithm operators, respectively. Under the log-Euclidean 
framework, a geodesic connecting iQ and jQ is defined as 

( ) exp((1 ) log( ) log( ))i jt t tQ Q    for [0,1]t . The geodesic 

distance between iQ  and jQ  can be expressed as 

( , ) log( ) - log( )i j i j F
D Q Q Q Q  (1) 

where 
F

  denotes the Frobenius matrix norm induced by the 

Frobenius matrix inner product ,
F

  . As can be observed, 

Log-Euclidean metrics correspond to Euclidean metrics in the 
domain of logarithms. Compared to Euclidean metrics, they 
satisfy a number of invariance properties, like inversion in-
variant, construction invariant with respect to any logarithmic 
multiplication and similarity-invariant (e.g., orthogonal trans-
formation and scaling). For more details of the Log-Euclidean 

metrics on dSym
, readers are referred to [21, 22, 24]. 

      Furthermore, since kernel methods have been proven ef-
fective for many computer vision tasks, some researches are 
devoted to kernel methods for manifold-valued data. The 
Gaussian kernel is perhaps the most popular kernel. It would 
therefore seem natural to adapt this kernel to account for the 
geometry of Riemannian manifolds by replacing the Euclidean 
distance in the Gaussian kernel with the geodesic distance on 
the manifold. One positive definite Gaussian kernel is stated as 
following:  
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    Numerical experiments in [23, 25] have shown that the re-
sulting manifold kernel methods outperform the corresponding 
Euclidean kernel methods. 

III. PROPOSED ALGORITHM

A. Review of MIND

The modality independent neighborhood descriptor (MIND)
[5] was proposed by Heinrich et al. for multi-modal image
registration. The MIND was computed based on the similarities
between neighboring patches. The MIND is not rotationally
invariant and it only utilizes the image intensities for similarity
computation. Therefore, it will generate inaccurate registration
results for corners, edges and complicated textured regions
where rotations may exist between features.

 Self-similarity is a concept introduced by Buades et al. for 
nonlocal means (NLM) denoising [26]. Similar to the NLM 
method, the MIND also explores image self-similarities by 
replacing the local comparison of individual pixels with the 
non- local comparison of image patches. In the MIND, for two 
pixels at x  and x r  in the spatial search region R of image 

I , the similarity ( , , )MIND I x r  is computed as:  

1 ( , , )
( , , ) exp( )  

( , )

D I x x r
MIND I x r r R

n V I x


      (3) 

2
( , , ) x yD I x y P P                                     (4) 

where ( , , )D I x x r  is the Euclidean distance between two 

similarity windows (i.e., image patches xP  and x rP  ) centered 

at x  and x r , respectively. The denominator in Eq. (3) acts 
as the smoothing parameter and it is computed as the mean of 
the patch distances themselves within a six-neighborhood 
centered at x . From Eq. (3), we can see that the MIND com-
putes the pixel similarity based on the differences between the 
intensities of image patches in the translational sense. Because 
this method only utilizes the intensity information, it is not 
robust to contrast variations. It is difficult to accurately deter-
mine self-similarity for the medical images with the compli-
cated edge/texture features which may involve rotational 
self-similarity. The incorrect local image structure representa-
tion resulting from the MIND will influence the final non-rigid 
multi-modal registration results. To address this problem, some 
researchers turn to integrate some intensity-insensitive infor-
mation into the MIND principle for achieving better alignment 
[16-18]. For instance, Li et al. exploited the autocorrelation of 
local structural information consisting of local phase and phase 
congruency features [17]. In this work, a non-Euclidean metric 
will be introduced by virtue of its rotational invariance to ex-
plore rotational self-similarity effectively by utilizing both 
intensities and edge/texture features of the multi-modal images. 

B. Proposed MIND-LeM Descriptor

In this work, a new Log-Euclidean metric for image regis-
tration is introduced. As stated in refs. [21, 22, 24], the variable 
Q  in log-Euclidean distance Eq. (1) should be a SPD matrix. 
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Usually, it can be the covariance matrix that describes the local 
image properties, consisting of local image features such as the 
intensity, gradients or high-order derivatives. In the calculation 
of Log-Euclidean distance, it involves the eigen decomposition. 
Here we sort to a simple and approximate way to approach the 
LeM descriptor. We view the variables in two-pixel neighbor 
region to form the covariance matrix as a SPD matrix with size 

1d  , similar to the strategy used in ref. [27]. Specifically, for 
image intensity set 

1{ , }x xI I
 located at two neighbor points, the 

covariance matrix is 2 2
1( ) ( )x x x xQ I I I    . Notice that in 

this case the covariance matrix is truly the first-order deriva-
tives, i.e., gradients. 
      After this special covariance matrix is defined, we incor-
porate it into the MIND descriptor, replacing the classical Eu-
clidean metric by the Log-Euclidean metric. Accordingly, the 
similarity descriptor termed - ( , , )MIND LeM I x r  is computed 

as:  

1 ( , , )
- ( , , ) exp( )    

( , )

D I x x r
MIND LeM I x r r R

n V I x


       (5) 

22 2( , , ) log( ) log( )x yD I x y I I     (6) 

where 
22 2log( ) log( )x yI I    is the Log-Euclidean distance 

between two similarity image pixels, respectively. In practical 
implementation, we use a Gaussian-kernel weight to convolute 
the whole patch around pixel 

xI  to approximate it. 

      Inspired by the L1-norm and in order to attain a simpler 

formulation, we substitute Eq. (6) by log logx yI I   and 

modify Eq. (5) to be Eq. (7), yielding: 

  
log log1

- ( , , ) exp( )    
( , )

x y

x

I I
MIND LeM I x r y R

n V I x

  
     (7)  

    As seen from Eq. (7), MIND-LeM aims at optimizing the 
kernelized geodesic distance-based measure defined in 
Log-Euclidean space. It has intrinsic difference with the tradi-
tional measures defined in Euclidean space. In the following, 
we reveal their differences mathematically, and subsequently 
get some enlightenment why it works well for similarity metric. 
Particularly, by letting ( , )V I x   and some algebraic manip-

ulation, Eq. (7) can be written as follows:    

   

exp( log )

= | + |
y x y x

y x

y x y xI I I I

I I

I I I I
 





     

  

   

 (8)  

where log log logy x y xI I I I      . As seen in Eq. (8), 

the objective function is divided into two parts. One for pixel 

pairs with 
y xI I   and the other with

y xI I   . The 

proposed metric has some promising properties. First, for the 

pixel pairs with 
y xI I   , its objective function is 

y xI I


  .

 

In the meantime, for the pixel pairs with 

y xI I   , the associate function is 
y xI I


  . 

When  is smaller than 1, i.e., 0 1  , just like the clas-

sical power law transform function [28], for the pixel whose 

value 
yI  is far away from the original gradient

xI , 

 y xI I


  will be transformed to a larger value, thus in the 

whole cost functional, more value will be assigned on these 
image pixel pairs. Specifically, the cost function in the interval 

of 
y xI I    is amplified much higher than that in the in-

terval of 
y xI I   , thus more attention will be enforced to 

the overlooked pixel pairs. A visual demonstration of the power 
law transform and the objective function with different 

 

are 

shown in Fig. 1. 
Additionally, it is worth noting that when =0 , the function 

is identical to 1, and the model tends to be nonsense. On the 

other hand, there exists exp( log )y xI I  

 

1 log y xI I    , then, it should be 1

log y xI I
 

 
. In 

this work, we set it to be the mean of the patch distance within 
the six-neighborhood region. 

     (a)                                                  (b) 

Fig. 1. (a) Illustration of power law transform , 0s t t  . (b) Illustration of 

transform 1 0 1| |t ts t t 
    .   

The difference between the Log-Euclidean distance Eq. (8) 

and Euclidean distance 2( 1)y xI I    are shown in Fig. 2. It 

can be observed that our penalty function is more adaptive and 
meaningful. 

Fig. 2. Visualization of transform 1 1| |t ts t t 
   and 2( 1)s t  . 

C. Multi-modal Registration

It is worth noting that, to further improve robustness, we use
the Gaussian-kernel weight to convolute the whole patch 
around pixel 

xI  to approximate the gradient. Given the fixed 

and moving images 
1 2( ), ( )I x I x  , the objective of image registra-

tion is to determine the deformation field u by minimizing the 
following function:   
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 2
1 2min ( ( ), ( )) ( ( ) * ( ))T

u
x

S I x I x u tr u x u x      (9) 

where 1 2 1 2

1
( ( ), ( )) - ( , , ) - ( , , )

r R

S I x I x MIND LeM I x r MIND LeM I x r
R 

 

measures the non-local intensity difference similarity between 
reference and deformable image, depending on the deformation 
u . The second term is the diffusion deformation regularity, 
which favors a smooth deformation field.   is a parameter 
balancing the two terms.  

 The nonlinear function Eq. (9) can be simplified to be  

1 2min , [ ( ( ), ( )), ( )]T

u
f f f S I x I x u u x       (10) 

Since it has 
2 2 2( ) ( ) ( )I x u I x I xS S S u    and u u    , Its derivative 

is 
2( )[ , ]I xJ S    . Accordingly, by applying the Gauss-Newton, 

the update rule at each iteration is T TJ Ju J f , where J  is the 

derivative of f  with respect to variable u. Hence the resulting 

deformation field on the basis of previous value iu  is given by 
the following scheme 

 
2 2 2 2

1
( ) ( ) ( ) ( )( ) ( )T i T i

I x I x I x I xS S u S S u             (11) 

    In order to gain additional speedup and avoid being trapped 
in local minima, a multi-level scheme is used to represent the 
coarse-to-fine details of both volumes. At each step, a sym-
metric deformable registration is followed which prefers to 
obtain diffeomorphic transformations, avoiding physically 
implausible folding of volume occurs [29].  

IV. EXPERIMENTS AND RESULTS

    In this section, we test our registration algorithm on 2D and 
3D data, in terms of robustness and accuracy. We evaluate our 
findings based on the target registration error (TRE) of ana-
tomical landmarks. The TRE for a given transformation ( )u x  

and an anatomical landmark pair ( , )x x  is defined by: 

 
2

( )TRE x u x x L     (12) 

where L   and L  are the set of anatomical landmarks and the 

number of landmarks in the reference image, respectively. 
    We first apply the method to some simulated data that needs 
to be registered from dataset, then perform deformable regis-
trations on CT and MRI scans of patient and ten CT datasets of 
lung cancer patients. In all the experiments, the weighting 
parameter   in the regularization term (9) was set to 0.1 for 
both MIND and MIND-LeM methods. All experiments are in 
Matlab, on an Intel Core i7-4700MQ CPU 2.4 GHz Windows 
64-bit operating system with 8 GB RAM.  

A. Deformable registration of simulated data

We use the T1 and PD weighted MRI scan from the Visible
Human dataset to form a synthetic data pair, the fixed image is 
corrupted by applying a spatially-varying intensity distortion as 
described by Myronenko et al. [30] and the moving image is 
contaminated by the distortion as well as Gaussian noise. As 
shown in Fig. 3, the high-dimensional image descriptors of 
MIND and MIND-LeM are displayed. It can be observed that 
the MIND-LeM descriptor depends less on the intensity dif-

ferences within the search region around each pixel in the same 
modality.      

 (a)          (b)

     (c)                                                          (d)
Fig. 3. Comparison of the MIND and MIND-LeM descriptor. 

We conduct experiments in Visible Human dataset [31] and 
the Brain Tumor Segmentation (BRATS) challenge [32]. All 
the scans in both datasets are taken post-mortem, no motion is 
present and different modalities are aligned perfectly. To pro-
duce the artificial deformations in the synthetic data, a geo-
metric distortion with a thin-plate spline (TPS) model is applied 
to the corresponding source image to get the moving image. 
Additionally, in the T1-PD pair, spatially-varying intensity 
distortion is added to the both fixed and moving images.   

In the result, the reference image is displayed in green and 
the registered version of moving image in magenta. As ex-
pected, a well-done registration yields a gray-scale image and 
larger color differs imply higher misregistration. The registra-
tion comparison is shown in Fig. 4.  It can be observed that 
MIND-LeM produces better registration results in the region 
with simulated intensity distortions and large spatial defor-
mations than MIND, as indicated by the yellow arrows.     

B. Deformable registration of real data

A demonstration of registering the CT-MRI is depicted in
Fig. 5. We purposely add non-functional intensity distortion 
and Gaussian additive noise on the fixed and moving images. 
Compared to MIND, MIND-LeM attains better correspondence 
between points of similar geometry in the fixed CT and moving 
MR image, as denoted by yellow arrows. MIND-LeM is robust 
to noise and has the ability to preserve small structures.   

 (a)            (b)  
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       (c)                                                          (d)   
Fig. 5. Deformable registration result for CT-MRI pair. (a) simulated fixed 
image, (b) moving image, (c)(d) registration display between the fixed and 
moving image obtained by MIND and MIND-LeM. 

We perform deformable registration on ten 4D thoracic CT 
scan pairs between inhale and exhale phase of the breathing 
cycle, provided by the DIR-Lab at the University of Texas [33]. 
Each scan pair is acquired on the thorax and upper abdomen of 
patients treated for esophagian cancer, between inhale and 
exhale phase of the breathing cycle. The slice thickness is 2.5 
mm, and in-plane resolution ranges from 0.97 to 1.16 mm. For 
each scan 300 anatomical landmarks have been carefully an-
notated by thoracic imaging experts with inter-observer errors 
of less than 1 mm. Major challenges arise from possible con-
trast variations between tissue and air induced by lung com-
pression, motion discontinuities at the lung/rib cage interface, 
as well as large deformations of small features such as lung 
vessels, airways. In the experiment, we apply registration di-
rectly between each pair of the original CT scans.  
     Among all the cases, the maximum average landmark error 
before registration is 15 mm in Case 8, the maximum dis-
placement of a single landmark is 30 mm. The visual compar-
ison of this shown in Fig. 6. In this visualization, the source 
image is shown in magenta while the reference image is shown 
in green. Gray scale image will emerge in the regions where the 
images are fully aligned. In the unregistered case, magenta and 
green areas can clearly be observed indicating that the mor-
phology is not aligned. In the registered cases, these colored 

areas almost disappear indicating that the images have been 
successfully registered. Particularly, MIND-LeM largely di-
minishes these regions than that of MIND.   

Table 1 summarizes the average TRE comparison results. 
The mean landmark distance and corresponding standard de-
viations are recorded. It can be observed that MIND-LeM 
achieves lower TRE value than the MIND method. 

Table 1. Target registration error (in millimeters) obtained over the 10 cases of 
thorax CT-scans for all tested experimental conditions. 

BEFORE MIND MIND-LeM 
TRE 8.46(6.58) 2.14(3.71) 1.58(2.58) 

V. CONCLUSIONS AND FUTURE WORK

     In this paper, a new descriptor termed MIND-LeM was 
developed for structural representation of images to be regis-
tered. MIND-LeM exploits the Log-Euclidean metric for SPD 
matrices consisting of patches, thereafter forming the mul-
ti-dimensional similarity metric. Its potential was illustrated in 
experimental results, showing the advantages of the proposed 
method over state-of-the-art techniques both in quantitative and 
qualitative perspectives.  

In the current work, we present a simple class of the LeM 
descriptor by only considering the intensity difference in 
two-pixel neighbor region as image feature to form the covar-
iance matrix and apply Gaussian weight of small patch to ap-
proximate it. In the forthcoming study, higher-order features 
will be investigated in the construction of covariance matrix 
such as to better represent the local image correlation of image 
cues, subsequently leading to better similarity metric for reg-
istration. In particular, it was stated in [24] that, in the proce-
dure of computing the logarithm of the covariance matrix, there 
exists closed-form solution for eigen-decomposition of matrix 
with size d =2 and 3. Hence it provides a promising pave for 
exploring the high-order local features.        

       (a)                                              (b)                                              (c)                                              (d)                                               (e) 
Fig. 4. Registration comparison of T1-PD and T1-T2 pair. (a) fixed image, (b) moving image, (c) source/reference of the moving image, (d)(e) registration display 
between the reference and moving image obtained by MIND and MIND-LeM.  
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Fig. 6. Deformable registration result for Case 8 of the CT dataset. Top: axial, middle: sagittal and bottom: coronal plane. Left row: before registration, center and 
right row: after registration using MIND and the proposed MIND-LeM technique. The target image is displayed in magenta and the source image in green (com-
plementary color).  
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