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ABSTRACT 

 

Image recovery from undersampled data has always been a 

challenging and fascinating task due to its implicit ill-posed 

nature and significance accompanied with the emerging 

compressed sensing (CS) theory. This paper proposes a 

novel Gradient based Dictionary Learning method for CT 

image Reconstruction (GradDL-CT), which alleviates the 

drawback of the popular total variation (TV) regularization 

by employing dictionary learning technique. Specifically, we 

firstly train dictionaries from the horizontal and vertical 

gradients of the image respectively, and then reconstruct the 

desired image using the sparse representations of both 

derivatives, exploiting gradient magnitude image sparsity for 

reduction in the number of projections or the X-ray dose. 

Preliminary results on phantom and real CT images 

demonstrate that the proposed method can efficiently 

recover images and presents advantages over the current 

state-of-the-art reconstruction approaches. 

 

Index Terms—CT reconstruction; dictionary learning; sparse 

representation; gradient magnitude image; alternating 

direction method  

 

1. INTRODUCTION 

 

Computed Tomography (CT) is a technology that obtains the 

tomogram of the observed object.
 

In the biomedical 

applications, lower radiation dose have been constantly 

pursued. In order to shorten scanning time and reduce 

radiation dose, the scanning views are within an angular 

range that is often both limited and sparsely sampled. Until 

quite recently, the traditional filtered back projection (FBP) 

method has been commonly exploited in CT reconstruction. 

However, using FBP method may prolong scanning time and 

cumulate with a high dose of radiation being harmful to 

human body. Otherwise, with fewer projections, it will pro-

duce reconstructions with serious blurring and artifacts [1].  
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The compressed sensing (CS) theory as a fundamental 

and newly developed methodology has gained much 

attention [2]. Compared to traditional algebraic 

reconstruction technique (ART) algorithms, CS-based 

iterative algorithms usually minimize the L1-norm of the 

sparse image in certain domain/transform  as the constraint 

factor for the iteration procedure, to reconstruct images from 

substantially reduced projection data and to reduce the 

impact of artifacts introduced into the CT reconstructed 

image due to insufficient projections. Recent work in 

iterative image reconstruction in CT has focused on some 

forms of total variation (TV) minimization [3], and one of 

the motivations for employing TV minimization is 

exploiting sparsity in the gradient magnitude image to 

reduce sampling requirements.  

Regretfully, TV prior prefers cartoon-like images which 

are piecewise constant, thus it would not be an ideal option. 

There are two research directions for alleviating the 

drawback. Some authors turn to the non-convex penalty 

alternative to the L1-norm. Ramirez-Giraldo presented the 

non-convex prior image constrained compressed sensing 

algorithm for dynamic CT [4]. Some researchers devoted to 

integrating the nonlocal and similarity property into the TV 

model [5-8]. For instance, Lou et al. [5] incorporated a semi-

nonlocal priority into the TV-minimization (NLTV) to 

enhance the tomographic reconstruction; some methods that 

utilize sparsity prior under adaptive transform/dictionary 

were developed [7-8]. Xu et al. [8] applied synthesis 

dictionary learning as a regularizer for CT reconstruction 

from low-dose projections.  

Motivated by our recently work on dictionary learning 

(DL) in gradient domain for CS [9], we present a new 

method for CT image reconstruction from few-projection 

data. The method combines an iterative reconstruction 

framework with an adaptive sparsifying transform penalty. 

An alternating minimization approach is used to jointly 

reconstruct the image while learning a sparsifying transform 

adapted to the gradient magnitude of particular image being 

reconstructed. The alternating direction method (ADM) is 

used to provide a computationally efficient solution to the 

minimization problem. Numerical experiments performed on 

phantom data and clinical CT images indicate its superior to 

other existing methods.  
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2. ALGORITHM GRADDL-CT 

 

In this section, after the traditional CT reconstruction 

methods were briefly reviewed, the proposed GradDL-CT 

was detailed derived by interpreting the proposed model and 

then we employed alternating algorithm to tackle with the 

resulting minimization.  

 

2.1. Reviews of conventional CT reconstruction  

 

Let vector u denote one cross-section of patient anatomical 

information, and f represent another vector on x-ray 

detectors in parallel beam geometry. These two are related 

by Pu f , where P  represents an x-ray projection matrix. 

A CT reconstruction problem is formulated as the retrieval 

of the vector u  based on the observation f given the 

projection matrix P . 

The so-called few-projection CT reconstruction problem 

is well known to be highly under-determined in that there are 

infinitely many solution vectors u satisfying the equation 

Pu f . In order to single out an ideal CT image u , 

additional information needs to be imposed properly. For 

this purpose, regularization models are usually used to 

reconstruct a desirable CT image. As such, one considers the 

optimization problem 

                         
2

1 2
arg m in ( )

u

u J u Pu f                    (1) 

where the first term ( )J u  is a regularization term. The 

second term ensures the consistency between the 

reconstructed CT image u and the observation f . 
1

0   is 

a penalty parameter. The well known example is the TV 

regularization 
1

( )J u u  [3]. Recently, more sophisticated 

regularization penalties such as wave-lets [10], tight frames 

(TF) [11], NLTV [6], and DL [12] have been proposed.  

 

2.2. Algorithm GradDL-CT  

 

Motivated by the strong ability of utilizing adaptive diction-

ary to representation patch structure, and to reconstruct 

image using dictionaries learned from the gradients [12, 9], 

we propose a new model as follows: 
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where 
(1)

  and 
( 2 )

  denote the difference operators in 

horizontal and vertical directions. The first term in the cost 

function captures the sparse prior of the gradient-image 

patches with respect to dictionaries
( )

{ , 1, 2}
i

D i  . 
( )

( )
i

l
R u  

denotes a vectored form of the M M  patch extracted 

from the image 
( )i

u  of size N N  and 
1 1

[ , , , ]
L

     

denotes the sparse coefficient matrix of these patches. 
0

T  

controls the sparsity of the patch representation.  

The proposed model in (2) can be viewed as an extension 

and adaptive strategy of the model in (1). Specifically, the 

former can be degraded to the latter by setting the dictionary 

to be fixed basis (i.e. identity matrix
M M

D I


 ) and relaxing 

0
l quasi-norm to be 

1
l -norm. Therefore, with Lagrangian 

formulation, Eq. (2) has the unconstrained version: 
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Eq. (3) approximates the model in (1) with TV 

regularization as 
3

   . In this case, by restricting the 

basis to be fixed, the local-adaptive patch based sparsity is 

degraded to the global TV-based image sparsity. Hence, it 

can be expected that the proposed model (2) has the 

potential to successfully recover image with complex 

structure and details by adaptively learning basis/atom from 

the gradient images to match local feature, while TV model 

cannot when the measurements are highly undersampled or 

contaminated with heavy noise. 

 

2.3. ADM-based solver  

 

Recently, splitting methods such as ADM or Split-Bregman 

have become popular for solve optimization problem [9, 10, 

13]. Here we also resort to the splitting technique. 

Specifically, an augmented Lagrangian/ Bregman iterative 

technique is employed and an algorithm called GradDL-CT 

is developed. The algorithm alternately updates sparse 

representation of the gradient image patches, recovers the 

horizontal and vertical gradients, and estimates the desired 

image from both gradients.  

The problem in (2) can be rewritten as follows by 

introducing auxiliary variables 
( )i

w , 1, 2i  , 
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Then, by applying the Bregman technique and denoting 
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, we can obtain a 

sequence of constrained subproblems as follows:    
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(6) 

where 
2

  denotes the positive penalty parameter. In order to 

address the minimization of Eq. (5) with respect to u , w  

and the sparse representation variables D  and  , the ADM 

was used in our work. This technique carries out 

approximation via alternating minimization with respect to 

one variable while keeping other variables fixed.  

 

Updating the solution u  

At the k -th iteration, w , ( )i
D  and 

( )i

l
  are fixed and the 

objective function is minimized over u    

 
221

1 22 2
arg min

k k k

u

u Pu f b u w 

              (7)                                        

This is a minimization problem of a quadratic of variable 

u  and can be solved by simple gradient descent or 

conjugate gradient algorithm. We follow the implementation 

as that in ref. [14].  

 

 Updating the gradient image variables 
( )

, 1, 2
i

w i    

 The minimization in Eq. (5) with respect to 
(1)

w  and 
( 2 )

w  is decoupled, and then can be solved separately. It 

yields: 
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Since this is also a least squares problem, we can follow 

the implementation as that in ref. [9]. 

 

Sparse representation for gradient patches with respect to 

variables ( )i
D  and 

( )i

l
  , 1, 2, ,l L  

The minimization (5) with respect to dictionary and 

coefficient variables of the gradient images in horizontal and 

vertical directions is also decoupled thus they can be solved 

separately. It yields:  
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The strategy to solve (9) is alternatively updating the 

dictionary 
( )i

D  and coefficient matrix 
( )i

l
 , the same as that 

used in K-SVD algorithm [7, 12]. At sparse coding step, 

seeking the solution of Eq. (9) with respect to a fixed 

dictionary 
( )i

D  is achieved by greedy algorithm- orthogonal 

matching pursuit (OMP). While at the dictionary updating 

step, the columns of the dictionary are updated sequentially 

one at a time using the singular value decomposition (SVD) 

to minimize the approximation error. 

 

3. EXPERIMENTAL RESULTS 

 

To evaluate the proposed GradDL-CT, Digital NCAT 

phantom and real clinical images with size 256 256  

reported in ref. [6] were used in our experiment, which are 

shown in Fig. 1(a)(b). Parallel beams with the beam of 363 

X-rays were simulated to generate the complete projection 

data. The projections were uniformly distributed in the angle 

range of  0 180  degrees, and the sparse projections were 

simulated by generating the specified number of uniformly 

distributed projections from the test images. Our proposed 

method GradDL-CT was compared with the TV-CT 

proposed by Sidky et al. [3] and DL-CT developed by Liao 

et al. [7]. The setting of these parameters is very similar to 

that in refs. [7, 9]. We do not discuss here due to the paper 

limit. The quality of the reconstruction is quantified using 

the Mean Square Error (MSE).  

      Fig. 1(c)(d) list the MSE values of the three methods 

versus sparse projections ranging from 40 to 150. It can be 

observed that our method constantly outperforms the other 

two approaches at all sparse levels. Compared to the TV-CT 

method, GradDL-CT substantially improves the quality of 

the reconstructed image when the projections is sparse, 

indicating that enhancing the sparse representation of 

gradient domain. On the other hand, compared to the DL-CT 

method, GradDL-CT achieves comparable results when the 

projections is sparse, and substantially improves the quality 

of the reconstructed image when the number of the project-

ions is relatively high. Specially, as shown in Fig. 1(d), the 

MSE value of the GradDL-CT image reconstructed from 70 

projections is comparable to the value of the DL-CT result 

from 100 projections and TV-CT from 120 projections.  
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          (c)                                              (d)     

Fig. 1. Reconstruction errors of TV-CT, DL-CT and GradDL-CT 

versus the number of projections. Result (c) corresponds to image 

(a), and (d) corresponds to image (b). 
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Figs. 2 and 3 show comparisons of results generated by 

the three methods. Regardless of the phantom with simple 

anatomical structure or the real image containing detailed 

structures, it can be observed from the error images in the 

second row, GradDL-CT is better in reducing aliasing 

artifacts and maintaining fine details than TV-CT and DL-

CT. The reconstructions with GradDL-CT method exhibit 

higher resolution than the other two methods.  

 

                                        
(a)                             (b)                             (c) 

    
(d)                             (e)                               (f)  

Fig. 2. Reconstruction of NCAT phantom by TV-CT (a), DL-CT (b) 

and GradDL-CT (c),  in which the number of projections was 80. 

(d), (e) and (f) are error images for  (a), (b) and (c), respectively. 

 

   
(a)                             (b)                             (c)                                                                  

    
 (d)                           (e)                               (f)  

Fig. 3. Reconstruction of a real clinical image by TV-CT (a), DL-

CT (b) and GradDL-CT (c). The number of projections was 80. (d), 

(e) and (f) are error images for  (a), (b) and (c), respectively.  

 

4. CONCLUSION 

 

We present a new gradient-domain dictionary learning 

method for CT reconstruction from few-view data. The 

proposed GradDL-CT method improves the TV-CT model 

to handle with not only piecewise constant images but also 

texture-rich images. It enables local features existed in the 

gradient images to be captured effectively. Preliminary 

experimental results on both simulated and real images have 

consistently demonstrated the superior performance of the 

algorithm. We will extend the proposed framework to deal 

with more complicated statistical model including weighted 

norm on the data fidelity term like refs. [8, 13].  
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