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ABSTRACT 

 

Initialization sensitivity usually occurs in dictionary learning 

algorithm for image decomposition. In this paper, we 

propose an adaptive dictionary learning algorithm by 

promoting structural incoherence at the stage of dictionary 

updating. The structural incoherence based dictionary 

learning (SIDL) method guides the cartoon and texture parts 

to be more properly represented by two incoherent 

dictionaries.  The resulting minimization is approximately 

addressed by majorization-minimization (MM) technique. 

Experimental results demonstrate that the dictionaries 

generated by SIDL can better describe different 

morphological contents and subsequently the cartoon and 

texture components are better separated, in terms of visual 

comparisons and quantitative measures.  

 

Index Terms—Image decomposition, sparse 

representation, dictionary learning, structural incoherence, 

majorizaion-minimization 

 

1. INTRODUCTION 

 

Image decomposition is usually the first step to the solution 

of many image processing tasks. Suppose an image f is 

separated as the sum of two independent components 

1 2f u u  : where the piecewise smooth function 
1u  with 

quasi-flat
１

intensity plateaus and jump discontinuities is 

usually called “cartoon”, that contains main large-scale 

structure features of the image; 2u is a small-scale oscillatory 

function capturing texture and possibly noise, and usually 

has some periodicity and oscillatory nature. The structure 

component 1u can be used for feature detection, 

segmentation and object recognition, while the texture 
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component 
2u for solving various texture-depended 

problems e.g. classification, surface analysis, 

shape/orientation from texture. Recently publications in a 

wide applications like inpainting [1], demosaicing [2] and 

registration [3] have shown that this “decompose and solve 

one by one” strategy is very successful, by adapting 

algorithms for two different components. 

       Variational approaches are the most popular approaches 

to address the image decomposition problem. The common 

methods are often related to total variation (TV) 

minimization. They perform decomposition by modeling the 

cartoon 
1u  with TV semi-norm and using other appropriate 

norms for oscillating features 
2u . The original formulation 

of such approaches was due to Meyer [4], who suggested 

starting from the ROF model [5]: 

1

2

1 1 12 1
arg min{ ( ) }

u
u f u TV u                 (1) 

where the fidelity term is measured by 2L -norm. Since this 

model rejects the textures, Meyer used a new function space 

G , and replaced the 2L -norm by the G -norm. It was 

proved that G  corresponds to a space of oscillating 

functions, and thus is useful to model textures. Some 

approximated norm like ( )pdiv L -norm [6] and 1H  -norm [7] 

were developed by following this idea.  

        In recent years, applying sparse representation with 

general transforms/dictionaries to image decomposition has 

received an increasing amount of interest, under the name of 

morphological component analysis (MCA) [8-11]. MCA is 

an extension of TV-based model. In MCA, the given 

signal/image is decomposed into different morphological 

components, subject to the sparsity of each component in a 

known basis (or dictionary). One possible objective function 

can be formulated as follows:  

1 2

2 2

1 2 1 12 2 0

1 2 2
, , ,

2 2 2 0

ˆˆˆ ˆ{ , , , } arg min
                      i i

i i i

i I

i i
u u

i i i

i I

f u u R u D

u u
R u D 

   

 
  





     
 

  
   

 




    (2) 

280978-1-4799-2341-0/13/$31.00 ©2013 IEEE ICIP 2013

Authorized licensed use limited to: Nanchang University. Downloaded on September 23,2020 at 10:07:16 UTC from IEEE Xplore.  Restrictions apply. 



where 
1D  and 

2D  are assumed to be two mutually incoherent 

dictionaries. 
iR  denotes the operator that extracts the i -th 

patch 
1iR u  from image 

1u . Inspired by the success of 

dictionary learning (DL) in sparse representation of 

signal/image [12], Peyre et al. [10] presented an adaptive 

MCA scheme by learning the morphologies of image layers. 

They used both adaptive local dictionaries and fixed global 

transforms (e.g. wavelet, curvelet) for separating image from 

a single mixture. Li et al. [11] further developed an 

algorithm to adaptively learn both cartoon and textural 

dictionaries from the data. Examples empirically indicated 

that the method alleviated some deficiencies caused by using 

fixed dictionaries (e.g. capturing complex texture patterns).  

A main deficiency of these models in refs. [10, 11] is 

that two dictionaries corresponding to cartoon and texture 

parts may exhibit coherence, i.e. the similar atoms existed in 

both dictionaries. Therefore, a proper user-defined 

initialization is usually needed to drive the algorithm to 

some desired solutions. Motivated by the success of sparse 

representation with structured incoherence for image 

classification and clustering [13, 14], we propose a structural 

incoherence based dictionary learning (SIDL) algorithm to 

alleviate this drawback for image decomposition. By 

promoting the incoherence between the cartoon and texture 

associated dictionaries, the resulting decomposition 

components would be as independent as possible, thereby 

high quality decomposition performance will be achieved.    

 

2. ALGORITHM SIDL 

 

Consider that both 
1 1D   and

2 2D  are adaptively learned 

to represent two different components
1u , 

2u  under the 

sparse 
0L -norm constraint [10, 11], the objective function is 

as follows:  

1 1
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2 2
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  (3) 

1 1 2 2. .      ,     s t D D   

where 
1  and 

2  are  two incoherence dictionary sets.  

As analyzed in ref. [10, 11], the penalty function in Eq. 

(3) is non-convex jointly in all its arguments. The selections 

of initialization and optimization strategy are very important 

to achieve satisfying results.  It is worth noting that, most of 

the existing methods use empirically proper initial 

dictionaries to approximately satisfy the constrained 

incoherence conditions in Eq. (3) [10, 11].  

 

2.1. Dictionary Learning with Structured Incoherence  

 

Recently, forcing structured incoherence between 

different dictionaries for classification and clustering has 

gained promising performance. An incoherence-promoting 

term encourages dictionaries associated to different classes 

to be as independent as possible, meanwhile allowing for 

different classes to share features. Since the cartoon and 

texture parts in Eq. (3) can be seen as two different classes, 

we borrow the idea from ref. [13] and add a regularization 

term to the objective function in Eq. (3) to enforce the 

incoherence between the two dictionaries, which yields  
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where the regularization term for structural incoherence 
2

2 1

T

F
D D  sums up the Frobenius norms between pair of geo-

metrical dictionary 
1D  and textural dictionary 

2D .  The 

associated incoherence weight parameter   balances the 

sparse approximation and dictionary incoherence.  

It can be easily seen from Eq. (4) that, by incorporating 

the structured-incoherence induced regularizer, the cartoon 

and texture components associated to the two incoherent 

dictionaries will be more properly separated. i.e. the energy 

in Eq. (3) will lead to the learning of dictionary optimized to 

properly represent the corresponding component, meanwhile 

the new added term will ensure the coherence to be weak for 

each other.  

 

2.2. Algorithm Outline  

 

The minimization problem in Eq. (4) is highly non-convex. 

Usually iterative block relaxation coordinate descent 

minimization scheme was employed to address it. On one 

hand, under some approximation, the pursuit of dictionaries 

and coefficients can be achieved as follows:  

1
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2

2
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, 2
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A two-step alternative procedure is used to solve Eq. (5): 

the sparse coding stage and the dictionary updating stage. 

The formal stage can be solved by the usual methods as that 

in [12, 15]. When updating the dictionaries 
1D , 

2D ,  the 

incoherence regularization term provides the coupling 

between them, and an efficient method will be proposed to 

address it in the next subsection.  

On the other hand, once the sparse approximations of the 

image patches are obtained, image reconstruction can be 

conducted respectively for different morphological contents 

as following:  

1 2

2 2 2

1 2 1 1 2 22 2 2,
i i i i

u u
i I i I

Min f u u R u D R u D  
 

 
      

 
      (6) 

      Clearly, the minimization with respect to variable 
1u  and 

2u  can be attained by least square solution [10, 11]. 
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The SIDL method is summarized as follows: 

 

Algorithm SIDL: Structural incoherence based dictionary learning 

1: For 0n   to 1N  do  

2:      Sparse coding and update dictionary 
2D  

2

( 1) ( 1 2) ( 1 2)

2
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6: End (For) 

 

 

2.3. Dictionary Update  

 

For the minimization problem in Eq. (5), we adopt a 

relaxation strategy which alternatively updates 
1D   and 

2D .  

In the following, we will take the updating of  
1D  for 

instance. By calculating the objective function Eq. (5) with 

respect to 
1D , it yields 

1
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Let 2i i ix R f D   , then it yields 
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For convenience, we rewrite matrix  as 

1 2[ ; ; ; ]K    , where , 1,2, ,k k K   is the row vector 

of  . The atoms of 
1 1 2[ , , , ]KD d d d  are updated 

sequentially at a time to minimize the fidelity term. When 

updating
kd , all the other columns ,ld l k  are fixed. Then 

the minimization of Eq. (8) with respect to 
kd  is reduced to  

 

2
2

2 2
arg min

k

T

l l k k k
d

l k F

X d d D d  


            (9)               

Majorization-minimization (MM) technique is employed 

to add an additional proximal-like penalty at each inner step, 

to cancel out the term 
2

2 2

T

kD d  (for more details of MM 

technique, please refer to [16, 17, 18]). Assuming that index 

m  denotes the iterative number of the inner iteration of MM, 

the optimal of Eq. (9) can be approximately found by 

iteratively solving the following sub-problem.  

   

2
2

2 2 22
arg min ( ( ) ( )( ))

. .    1
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where 
2 2( )Teig D D  .  

       Let 
l l

l k

Y X d 


  , Eq. (10) can be written as  

     

22
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Differentiating it with respect to 
kd , and let it be 0, we 

have  

2 2( ( ) ) 0T T T m

k k k k k k kd d Y d I D D d             
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Thus the solution under constrain 1T

k kd d   is  

               2 2
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T T m
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k T T m
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Y I D D d
d

Y I D D d
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 


 
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where 
2

  is the 2L -norm.  

 
3. EXPERIMENTAL RESULTS 

 

The performance of SIDL was evaluated on several 

experiments, where the proposed method was initialized by 

the decomposition components obtained by OSV method [7]. 

All the test images are normalized to have a maximum 

magnitude of 1 and Gaussian noise with 0.02   is added 

to the reference images. It is worth noting that DL method is 

the special instance of the SIDL with 0  . The parameter 

settings of the sparse coding stage in both DL and SIDL 

follow the default values in refs. [12, 15]. 

Fig. 1 displays the decomposition for a synthesis image. 

The results by the OSV method (i.e. the initialization for 

SIDL) are given in Fig. 1(a), where we deliberately set the 

regularization parameter to be a bigger value( 0.2   in Eq. 

(1)), such that some texture details still exist in cartoon part. 

Since the initialized cartoon part (subsequently the 

dictionary) contains few texture contents, the traditional DL 

method exhibits some artifacts, indicated by the red arrow in 

Fig. 1(b). With our proposed SIDL, the sparse 

representation that takes into account the dictionary 

incoherence achieves the best performance. As a result, 

commonly shared features across different components are 

suppressed, while the independent ones are preserved. As 

seen from the third line of Fig. 1, there are some oriental 

textures prototypes/atoms remain in the resulting cartoon-

component dictionary by DL, while almost no such elements 

in that with SIDL algorithm. Additionally, the values of 
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structural incoherence 
2

2 1

T

F
D D  of methods DL and SIDL 

are 1637.16 and 246.97 respectively.   

    

   

        
(a)                             (b)                            (c)     

Figure 1. The cartoon-texture decomposition obtained by method 

(a) OSV, (b) DL and (c) SIDL with 0.1  . 

 

The effect of imposing dictionary incoherence is also 

investigated on real-life image “Barb”, which exhibits subtle 

cartoon parts and complex texture details. Figs. 2 and 3 

display the decomposition results for the three methods, 

where the OSV estimations with 0.2   and 1   are chosen 

as the initial image respectively. As expected, when the 

initial dictionary is properly provided, the decompositions in 

DL and SIDL as shown in Fig. 2 do not show much 

difference in visual concept. However, as shown in Fig. 3 

that when an inappropriate initial dictionary is chosen, 

promoting dictionary incoherence actually improves the 

decomposition. In Fig. 3(c), the geometric dictionary of 

SIDL algorithm describes the cartoon content better.  

The angle derivation error (ADE) which is based on the 

orthogonality of two image partitions [19], was used as the 

criteria to measure the independence in image 

decomposition. Fig. 4 plots the curve of the ADE versus 

iteration n  when different   in SIDL were used. It can be 

observed that encouraging incoherence between dictionaries 

during the iterative procedure really improves the 

performance. Additionally, 0.1   is usually a good choice.  

 

4. CONCLUSION 

 

In this paper, an adaptive dictionary learning algorithm with 

structural incoherence for image decomposition was 

proposed. The decomposition results were improved by 

forcing the structured incoherence between the cartoon and 

textural dictionaries. Experimental results demonstrate the 

effectiveness and robustness of the proposed algorithm, in 

terms of visual concepts and quantitative measures. Further 

studies will focus on extending the SIDL to address the 

sparsity-based blind source separation problem [20].  

   

    
(a)                             (b)                            (c)     

Figure 2. The cartoon-texture decomposition obtained by method 

(a) OSV, (b) DL and (c) SIDL with 0.2   and 0.1  .  

    

   

          
(a)                             (b)                            (c)     

Figure 3. The cartoon-texture decomposition obtained by method 

(a) OSV, (b) DL and (c) SIDL with 1   and 0.1  . 

1 2 3 4 5
3

4

5

6

7
x 10

-7

Iteration

A
n
g
le

 d
e
v
ia

ti
o
n
 e

rr
o
r 

(A
D

E
)

 

 

=0

=0.001

=0.01

=0.1

1 2 3 4 5
3.1

3.2

3.3

3.4

3.5
x 10

-6

Iteration

A
n
g
le

 d
e
v
ia

ti
o
n
 e

rr
o
r 

(A
D

E
)

 

 

=0

=0.001

=0.01

=0.1

1 2 3 4 5
1

1.2

1.4

1.6

1.8

2
x 10

-6

Iteration

A
n
g
le

 d
e
v
ia

ti
o
n
 e

rr
o
r 

(A
D

E
)

 

 

=0

=0.001

=0.01

=0.1

 
(a)                               (b)                              (c)      

Figure 4. ADE versus iteration n  of SIDL with 0,0.001,0.01,0.1  . 

The initial image of (a) is in Fig. 1, (b) is in Fig. 2 and (c) is in Fig. 

3. Noting that DL method is equal to SIDL with 0  .  
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