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Room-temperature Pd(II)-catalyzed direct C−H  TIPS-ethynylation 
of phenylacetic amides with terminal alkyne 
Cui-Hong Chen,a Yun Chai,a Zheng-Xin Zhou,a Wei-Hao Rao,b Bin Liu, a Li Liu,a Ran Xu,a Yue-Jin Liu,*a 
and Ming-Hua Zeng*a 

Ligand-promoted room-temperature Pd(II)-catalyzed direct C−H 
alkynylation of phenylacetic amides has been developed using 
commercially available TIPS-acetylene as an efficient alkynylating 
reagent, where 8-aminoquinoline was employed as a removable 
bidentate auxiliary, thus giving rise to optically pure ortho-
alkynylated α-APA in a highly efficient manner.

Alkynes are an exceptionally versatile functional group and 
are ubiquitous in pharmaceuticals, organic materials, and 
natural products.1 Therefore, the development of efficient 
synthetic methodologies to construct alkyne motifs is greatly 
attractive. In recent years, with the rapid progress in 
transition-metal-catalyzed C−H functionalization,2 direct C−H 
alkynylation of arenes has received much attention due to its 
advantages in atom-economy, step-economy and 
environmental benignity.3-6 To address the homocoupling issue 
of terminal alkynes under oxidative conditions,7 preactivated 
alkynylating reagents such as alkynyl halides3 and 
benziodoxolone-based hypervalent iodine reagents4 were 
successfully explored as coupling partners in C−H activation 
reactions. Despite these advances, it would be ideal to take 
advantage of ubiquitous terminal alkynes as the alkynylating 
reagent, which would provide a straightforward and step-
economy procedure. Although great progress have been made 
on transition-metal catalysed C-H alkynylation of activated 
substrates with terminal alkynes,5 the direct alkynylation 
reaction with unprefunctionalized alkynylated reagents via 
inert C-H bond activation is underdeveloped. 8 Thus, it is highly 
desirable to develop mild and efficient alkynylation systems to 
broaden the current limited substrate scope. 

Phenylacetic acids and α-aryl propionic acids (α-APAs) are 
significantly important organic skeletons in medicinal 
chemistry and organic synthesis.9 In past few years, significant 
progress has been made in direct C−H alkynylation of 
phenylacetic acid and α-APA derivatives.10
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Scheme 1 Direct C−H alkynylation of phenylacetic acid derivatives

In 2016, Zhao10a and Shi10b groups reported Pd(II)-catalyzed 
C−H alkynylation of phenylacetic acids and aryl acids with 
alkynylbromide using  bidentate directing groups. In 2017, 
Zeng group developed the first carboxylate-directed iridium 
catalyzed C−H alkynylation of phenylacetic acids using 
bromoalkyne as reagent.10c Very recently, our group reported 
ligand-promoted Pd(II)-catalyzed direct C−H alkynylation of 
free phenylacetic acids with bromoalkyne.10d Nevertheless, 
there are still some drawbacks including the prebromination of 
terminal alkyne, and relative higher temperature need to be 
overcome. As our continuous endeavor on developing efficient 
and mild C−H functionalizations,11 we herein describe a room-
temperature Pd(II)-catalyzed direct C−H alkynylation of 
phenylacetic acid derivatives with simple terminal alkyne 
promoted by mono-protected amino acid ligands. 

Initially, we selected s-2-(4-isobutylphenyl)propanoic amide 
(1a) as a model substrate and (triisopropylsilyl)acetylene 2 as a 
coupling reagent with the conditions previously established for 
Pd-catalyzed C−H alkynylation reaction with bromoalkyne.10d 
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However, the alkynylated product 3a was not detected 
(Scheme 2, entry 1). Reaction did not take place in other 
solvents such as DCE, and toluene (Scheme 2, entry 2, 3). To 
our delight, high yield of 3a (77%) was obtained, when NBS 
was added to the reaction (entry 4). However, other additives 
such as NCS, NIS, and I2 had low activities (entry 5-7). The NBS 
maybe play an important role in the generation of 
bromoalkyne in the presence of Ag salts. Then, we screened 
different silver salts. Silver nitrate is effective, giving the 
product in 63% yield (entry 8), but other silver salts such as 
Ag2CO3 and Ag2O had little effect on this alkynylation reaction 
(entry 9, 10). At last, a series of acids are screened (Scheme 2, 
entry 11-15, 17, 18). Although most acid ligands could 
promote the reaction, N-Boc-Ala-OH gave the best result. To 
our delight, the reaction could proceed successfully even at 
room temperature, giving the desired product in 78% yield and 
99% ee (entry 16). Considering that palladium catalysts usually 
possess high reactivity in C–H activation, 5 mol% of Pd(OAc)2 
was used in this reaction, only giving the product 3a in 35% 
yield. Based on these optimization studies, we confirmed that 
10 mol % Pd(OAc)2, 20 mol % N-Boc-Ala-OH, 1.2 equiv of 
AgTFA  and 1.2 equiv of NBS in t-AmylOH at room temperature 
offer the best reaction conditions for this C−H alkynylation 
reaction.
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0%

77%

< 5%

< 5%

20%

63%

9

10 NBS

< 5%

< 5%

1 /AgTFA

/AgTFA

NBSAgTFA

NCSAgTFA

NISAgTFA

I2AgTFA

NBSAgNO3

NBSAg2CO3

Ag2O

/ 0%AgTFA

CONHQ

Me
CONHQ

TIPS

Me

TIPS

HH

Pd(OAc)2 10 mol %

[Ag] 1.2 eq.
1a 2

iBu iBu

3a

additive 1.2 eq.

Ligand 20 mol %

solvents, 60 C, air
+

t-AmylOH

toluene

t-AmylOH

t-AmylOH

t-AmylOH

DCE

t-AmylOH

t-AmylOH

t-AmylOH

Solvent

t-AmylOH

Ligand (20 mol %)

N-Boc-Ala-OH

N-Boc-Ala-OH

N-Boc-Ala-OH

N-Boc-Ala-OH

N-Boc-Ala-OH

N-Boc-Ala-OH

N-Boc-Ala-OH

N-Boc-Ala-OH

N-Boc-Ala-OH

N-Boc-Ala-OH

[Ag]

11

12

NBS

NBS

61%

62%

AgTFA

AgTFA

t-AmylOH

t-AmylOH

PivOH

AdCO2H

13 NBS 64%AgTFA t-AmylOHN-Boc-Val-OH

14 NBS 62%AgTFA t-AmylOHN-Boc-lle-OH

15 NBS 66%AgTFA t-AmylOHN-Ac-Ala-OH

16b NBS 78%c (99% ee)AgTFA t-AmylOHN-Boc-Ala-OH

17

18

NBS

NBS

58%

60%

AgTFA

AgTFA

t-AmylOH

t-AmylOH

CH3CO2H

CF3CO2H

19d NBS 35%AgTFA t-AmylOHN-Boc-Ala-OH

Scheme 2 Optimization of the reaction conditions. aReaction 
conditions: 1a (0.1 mmol), 2 (0.15 mmol), Pd(OAc)2 (10 mol %), 
ligand ( 20 mol %), [Ag] (0.12 mmol), additive (0.12 mmol), solvent 
(1 mL), at 60 °C for 24 h under air. Isolated yields. bmono:di = 5:1.  

cConducted at rt. dPd(OAc)2 (5 mol %) was used.

With the optimized reaction conditions in hand, we probed 
its versatility in the C(sp2) −H alkynylation of α-aryl propionic 
amides and α-tertiary phenylacetic amides (Scheme 3). As 
expected, other chiral α-aryl propionic amide (3b, 3c, 3d) could 

successfully generate the ortho-alkynylated products in good 
yields, which proved high versatility and efficiency of this 
method for the synthesis of optically pure ortho-alkynylated α-
aryl propionic acids. The racemic α-aryl propionic amide 
substrates with methyl and methoxyl substituents could also 
give the target product in moderate yields (3e, 3f). To our 
delight, other alkyl substituents at α-position of phenylacetic 
acids were amenable to this reaction condition, thus 
generating the products in good to excellent yields (3g-3i, 3l-
3o). The steric hindrance of substituent has a significant effect 
on the reactivity of substrates. When the substituent group is 
an isopropyl group (1i) having a relatively large sterically 
hindered structure, only 60% yield was obtained. The 
substrates with cyclopentyl and cyclohexyl substituent at α-
position, could give the desired products in 76% (3m) and 63% 
(3n), respectively. The structure of product 3n was 
characterized by single-crystal X-ray diffraction.12 It is worth 
noting that the protected (s)-mandelic acid (1j) and (s)-α-
phenylglycine (1k) could smoothly produce the mono-
alkynylated product in 96% and 72% yields, respectively.
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Scheme 3 Scope of α-tertiary phenylacetic amides. aReaction 
conditions: 1 (0.1 mmol), 2 (0.15 mmol), Pd(OAc)2 (10 mol %), N-
Boc-Ala-OH( 20 mol %), AgTFA (0.12 mmol), NBS (0.12 mmol), t-
AmylOH (1 mL), at rt for 24 h under air. Isolated yields are 
presented. bConducted at 60 °C.  cConducted at 80 °C.

This mild and efficient Pd(II)-catalyzed C−H alkynylation 
reaction was not limited to α-aryl propionic acid and α-tertiary 
phenylacetic acid substrates. Diverse phenylacetic acid 
derivatives with various functional groups were also well 
tolerated, giving the ortho-alkynylated products in good to 
excellent isolated yields (Scheme 4). Both electron-donating 
and electron-withdrawing groups at the ortho- (5a-5d), meta-
(5e-5j), and para- (5k-5t) positions are well-tolerated. 
Additionally, the reaction showed good compatibility with a 
wide range of valuablefunctional groups, including fluoro (5b, 
5g, 5m), chloro (5c, 5h, 5n), bromo (5o), iodo (5q), alkyl (5a, 
5e, 5k, 5r), methoxyl (5f, 5l, 5t), acetylamino (5p), nitro (5s), 
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cyano (5i), and trifluoromethyl (5d, 5g) substituents. 
Interestingly, substrates bearing methyl, methoxyl, chloro, 
trifluoromethyl, and cyano at meta-position, respectively, 
offered the corresponding alkynylation product with high 
regioselectivity and good yields. However, the substrates with 
para- positions have low regioselectivity, producing mono- and 
di-alkynylated product (5k-5r). Nevertheless, the meta-fluoro 
derivatives gave a mixture of mono- and di-alkynylated 
products in good yield but the alkynylation of meta-fluoro 
phenylacetic amide (4g) reacted at the ortho-position of fluoro 
group probably because of different acidity of C−H bond. 
These results revealed that the nature of the substituent at the 
meta-position played a vital role in determining the outcome 
of the reaction. Notably, polysubstituted substrate, such as 
(3,4-dimethoxylphenylacetic amide) (4t), is also applicable to 
deliver the desired product in 78% yield. To better define the 
scope of this reaction, we further explored other terminal 
alkynes such as phenylacetylene and methyl propiolate. 
However, no expected coupling products were observed, 
indicating that the presence of a TIPS substituent was crucial 
for this reaction.
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Scheme 4 Scope of phenylacetic amides. Reaction conditions: 4 
(0.1 mmol), 2 (0.15 mmol), Pd(OAc)2 (10 mol %), N-Boc-Ala-OH( 20 
mol %), AgTFA (0.12 mmol), NBS (0.12 mmol), t-AmylOH (1 mL), at 
rt for 24 h under air. Isolated yields are presented.

To gain insight into the reaction mechanism, preliminary 
mechanistic experiments were also performed. Firstly, control 
experiments were carried out. As shown in Scheme 4a, no 
product 3a was detected in the absence of NBS or AgTFA 
under standard reaction conditions. However, the alkynylation 
product 3a could be obtained in 40% yield with bromoalkyne 
as alkynylating reagent instead of terminal alkyne 2, NBS and 
AgTFA (Scheme 4a). The control experiments show that NBS 
and AgTFA played crucial roles in the formation of 
bromoalkyne, which may be an important intermediate in this 
reaction. To further understand the detailed mechanism, the 

(bromoethynyl)triisopropylsilane was detected in situ by 
GC/MS analysis (262, 260) (See SI). Secondly, moderate yields 
of 3a were obtained when the reaction was performed in the 
presence of radical scavengers, such as 1,1-diphenylethylene 
and TEMPO, indicating that a radical pathway might not be 
involved (Scheme 4b).
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Scheme 4 Mechanistic studies 

       As shown in Scheme 5, a gram-scale synthesis was 
performed, giving the desired alkyne product in 72% isolated 
yield. The sequential removal of 8-aminoquinonline, 
esterification, and deprotection of TIPS group afford 
alkynylated ibuprofen derivatives in 66%, 85% isolated yield, 
respectively.13 

a) Gram-scale reaction and removal of directing group
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Scheme 5 Synthetic application 

In conclusion, we have developed a room-temperature 
Pd(II)-catalyzed direct C−H alkynylation of phenylacetic amides 
with terminal alkyne promoted by mono-protected amino 
acids. The reaction demonstrates broad substrate scope and 
good functional group tolerance. Notably, optically pure ortho-
alkynylated α-APAs could be obtained with excellent chirality 
retention. The synthetic application of this protocol has been 
proved by gram-scale synthesis and diversification of drug 
molecule. 
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