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Abstract: A dynamic adaptive hybrid integration (AHI) scheme of second-order accuracy (AHI2) 
is proposed for time-integration of chemically reacting flows involving stiff chemistry. It was 
shown in a previous study on AHI that, when significant radical source is present in the non-
chemical source terms, splitting the chemical and the transport sub-systems may incur O(1) 
integration errors unless the splitting time steps are comparable to or smaller than that required for 
explicit integration. As a consequence, the transport term must be carried during the integration of 
stiff chemistry to suppress the large error. As implemented in AHI, fast species and reactions that 
may cause stiffness are treated implicitly, while the non-stiff source terms and variables, including 
slow reactions and the mixing term, are treated explicitly. The fast-slow chemistry separation is 
performed on-the-fly based on analytically derived timescales for species and reactions. As such 
the number of equations and source terms to be implicitly solved at each time instance is 
minimized. In the present study, a second-order scheme involves an iterative procedure is 
proposed to achieve second-order accuracy for AHI. Eigen-analysis of the iteration matrix shows 
that only a small number of, say two to three, iterations are required to achieve the second order 
behavior, and the computational cost of the second order scheme is only slightly higher than that 
of the first order scheme. The second-order scheme is tested in a toy problem, as well as auto-
ignition and perfectly-stirred reactors (PSR) with detailed chemistry. Results show that, compared 
with the first-order AHI scheme, the second-order AHI can significantly improve the accuracy 
with slightly increased computational cost. 
 
Keywords: dynamic adaptive hybrid integration, stiff chemistry solver, second order accuracy, 
operator splitting 
 

 
1. Introduction 

High-fidelity simulations of reacting flow are important to predict and understand the 
complex processes in combustion, provide information for combustion modeling, and facilitate 
the design and optimization of engines. Detailed chemical kinetics is essential for accurate 
combustion simulations. However, the large number of species and reactions and stiffness result 
in severe challenges to accommodate detailed chemistry in combustion simulations. While the 
size of reaction models can be systematically reduced through skeletal reduction and timescale 
analyses [1], chemical stiffness typically remains in reduced models, such that the low-cost 
explicit integration solvers are not applicable, and the expensive implicit solvers, e.g. VODE [2] 
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and DASAC [3], have to be used in combustion simulations. To reduce the cost associated with 
stiff chemistry integration, a variety of methods have been developed, and a widely used 
approach is the operator splitting scheme, which separates the integration into chemistry 
fractional sub-steps and transport fractional sub-steps, such that fully implicit solvers are only 
applied for the local chemistry integration [4-14]. Another approach is the Implicit-Explicit 
(IMEX) methods [15-20] that discretize the stiff source term in implicit forms, and the non-stiff 
source term in explicit forms. Both the splitting schemes and IMEX can avoid fully implicit 
integration of the entire flow field, which is not feasible for large scale flame simulations. 

The splitting schemes nevertheless was found to give large splitting errors in some cases 
while the exact cause of the large error is not clear [21, 22]. In a recent study, a failing scenario 
of the splitting scheme was identified. It was found that the chemical source term may respond 
drastically differently due to the missing transport term during the integration of the chemistry 
sub-steps when significant radical source is present in the non-chemical source term. A dynamic 
hybrid integration scheme (AHI) was further proposed [21] to eliminate the splitting error. The 
AHI method separates reactions and species into fast and slow sets by comparing their timescales 
with the integration time step size. Fast species and reactions are treated implicitly while slow 
chemistry and transport are treated explicitly, such that the size of the chemistry core to be 
solved implicitly is minimized to achieve a high efficiency. 

Two key components that attribute to the high computational cost of large implicit reaction 
systems are typically the Jacobian evaluations and subsequent LU decomposition, the costs of 
which are ܱ(݊௦ଶ) and ܱ(݊௦ଷ), respectively, where ݊௦ is the number of variables. The evaluation of 
Jacobian for the chemical source term can be reduced by using analytic derivatives [1], while the 
high computational cost of LU decomposition can be reduced by preconditioning [23] and sparse 
matrix techniques [24-27]. Such techniques can be combined with AHI to further improve the 
efficiency. In the present study, the AHI scheme [21] is improved to achieve second-order 
accuracy through an iterative procedure, such that larger integration time steps can be assumed to 
achieve the same accuracy as the first order scheme. 

As an outline of this paper, the second-order AHI scheme (AHI2) is first formulated. The 
convergence rate of AHI2 is then analyzed based on the iteration matrix. The AHI2 method is 
first tested in a toy problem and compared with the first order AHI scheme (AHI1) and the 
Strang splitting scheme in term of error control. The accuracy and efficiency of AHI2 are then 
investigated with detailed chemistry in 0-dimensional (0-D) homogenous systems, including 
auto-ignition and unsteady perfectly stirred reactors (PSR). 
 
2. Methodology 
2.1 A second-order AHI scheme 

The spatially discretized governing equations of a reacting flow can be expressed as: 

 
݀݀ݐ = ()ࡹ + (1) ()ࡿ

where  is the vector of dependent variables, and M and S represent the transport and chemistry 
terms, respectively. Note that for multi-grid systems, 	consists of all the variables at different 
grid points. 

In the AHI method, the fast and slow reactions are separated on-the-fly based on the reaction 
timescale defined in computational singular perturbation (CSP) [28]: 

 ߬ ≡ |J ∙ |ିଵ (2)ࣇ
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 J = ߲Ω߲ࢉ = ቈ߲Ω߲ܿଵ , ߲Ω߲ܿଶ , … , ߲Ω߲ܿೞ , ࣇ = ,ଵ,ߥൣ ,ଶ,ߥ … ,  ೞ,൧்ߥ

where Ω  is the net reaction rate for the ith reaction, c is the vector of species mole 
concentrations, ݒ, is the stoichiometric coefficient of the kth species in the ith reaction. The ith 
reaction is considered fast if: 

 ߬ < ߬ߚ  (3)

where ߬ is a threshold timescale that is set to be the integration time step h in the present study, 
and ߚ is a safety factor that can be reaction model dependent. A default value of ߚ = 0.5 is used 
in the present study for all the simulations unless otherwise specified. The kth species is 
considered fast if it contributes significantly to a fast reaction, i.e.: 

 ฬ߲Ω߲ܿฬ > ି߬ߚ ଵ (4)

During the time integration, with the fast species and reactions being identified, the 
governing equation (Eq. 1) can be rewritten as: 

 ݀݀ݐ = ()ࡿ + ௦(), = ௦൨ (5)

where   and ௦  are the fast and slow variables of dimension ݊  and ݊ − ݊  , respectively, 
and ݊ is the dimension of . In this study, the integration time step is chosen to be sufficiently 
small compared to the timescales of temperature and transport, such that temperature is always 
treated as a slow variable in ௦, and the transport term is not stiff. 

ࡿ  =ࣇΩ
ୀଵ  (6a)

௦  = ∑ Ωೝୀାଵࣇ (6b) ,ࡹ+
where ݊ is the number of reactions in the system and m is the number of fast reactions.  

To achieve second-order accuracy, AHI2 employs an iterative approach to compute the 
midpoint rates of two successive sub-steps. To advance the solutions from time step n to n+1, the 
iterative procedure for the midpoint rate is computed as: ݇ଵଶ, = Φାଵଶ, − Φ12 ℎ = ܵ, ቆାଵଶ,,௦ାଵଶ,ିଵቇ + g௦, ቆାଵଶ,ିଵ,௦ାଵଶ,ିଵቇ (7)

where (݊ + 1/2) indicates the midpoint, subscript k represents the kth entry in , m is the 

iteration number, and ݇భమ, represents the midpoint rate for the kth variable at the mth iteration. 

For the first iteration, ݉ = 1 and ାభమ, = , where  is the current solution at the nth time 
step. It is noted that ܵ, , that is the contribution of the fast reactions for the kth species, is 
evaluated partially implicitly, while g௦,, the contribution of the slow reactions and the transport, 
is evaluated fully explicitly. 

During each iteration, Φାభమ, is solved using the same procedure as in AHI1, i.e. the group 

of fast variables ାభమ,  are solved implicitly using the first ݊  equations in Eq. (7) through 

Newton’s iteration. With the obtained fast variables ାభమ,, the slow variables ௦ାభమ, can be 
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integrated explicitly using the forward Euler scheme using the remaining (݊ − ݊) equations. It 
is noted that Eq. (7) converges to the midpoint rate obtained from the fully implicit scheme upon 
convergence, say at the qth iteration, such that second order accuracy is achieved.  
 
2.2 Convergence analysis 

The errors in the midpoint rates between the mth and (m+1)th iterations are characterized by 
the iteration matrix A: 

ێێۏ
ۍێ ቆ۷ − ℎ2 ,߲ࡿ߲ ቇିଵ ℎ2 ௦,߲߲ , ቆ۷ − ℎ2 ,߲ࡿ߲ ቇିଵ ℎ2 ߲൫ࡿ, + ௦,൯߲௦ℎଶ4 ,௦߲ࡿ߲ ቆ۷ − ℎ2 ,߲ࡿ߲ ቇିଵ ௦,߲߲ + ℎ2 ௦,௦߲߲ , ℎଶ4 ,௦߲ࡿ߲ ቆ۷ − ℎ2 ,߲ࡿ߲ ቇିଵ ߲൫ࡿ, + ௦,൯߲௦ + ℎ2 ߲൫ࡿ,௦ + ௦,௦൯߲௦ ۑۑے

	ېۑ (8) 

where the subscripts “,f” and “,s” indicate the sub-blocks in a rate vector corresponding to the 
fast and slow variables, respectively. Considering that 	߲ࡿ/߲ = (߬/1)ࡻ , where ߬  is the 
fastest chemical timescale and ߬ < ℎ, and ߲௦/߲, ,/߲௦ࡿ߲ ௦/߲௦߲ =  the orders of ,(1)ࡻ
different blocks of A can be expressed as   

  = ࡻ(߬) (ℎ)ࡻ(߬)ࡻ ൨(ℎ)ࡻ = (ℎ)ࡻ (9) 

which indicates that the spectral radius of A is ࡻ(ℎ), and the iterations converges quickly when 
the integration time step is small. 
 
3. Results and Discussion 
3.1 Convergence test of AHI2 for a toy problem 

To demonstrate that the convergence rate in the iterations of AHI2 is ࡻ(ℎ), the toy problem 
in [21] is first used: 

ܣ  భ→ܴ (R1) 

 ܴ మ→ܥ (R2) 

ܣ  + ܴߙ య→ܤ +  (R3) ܴߙ

where ݇ଵ, ݇ଶ and ݇ଷ are the rate coefficients for R1, R2 and R3, respectively. Species A is a 
reactant, B is a product, C is an intermediate species which is not of direct importance to A and 
B, and R is a radical that controls the important reaction R3 for product formation. The parameter ߙ controls the overall reaction order and nonlinearity of R3. 

The transport term of R is set to be a constant d for simplicity, and for other species, the 
transport terms are set to be zero. The dependent variables and source terms in Eq. (1) can be 
thereby expressed as: 

  = ,ܣ] ,ܤ ,ܥ ܴ]்  
ࡿ  = [−݇ଵܣ − ݇ଷܴܣఈ, ݇ଷܴܣఈ, ݇ଶܴ, ݇ଵܣ − ݇ଶܴ]  
ࡹ  = [0, 0, 0, ݀]  

 
The initial conditions are: ܣ = 1, ܤ = ܥ = ܴ = 0 at ݐ = 0. 
The reaction rate coefficient ݇ଶ is chosen to be much larger than ݇ଵ, i.e. ݇ଶ ≫ ݇ଵ, such that R is a 
quasi-steady state (QSS) species after an initial transient period and can be approximated as: 

 ܴ ≈ ݇ଵܣ + ݀݇ଶ  (10)
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In the present study, the parameters are chosen as: ݇ଵ = 1, ݇ଶ = ߬ିଵ, ݇ଷ = ߬ିఈ, ݀ = 1. Note 
that ݇ଷ is selected such that the rate of reaction R3, Ωଷ = ݇ଷܴܣఈ = ܱ(1). The timescale of R can 
be defined as ߬ = 1/݇ଶ, and the timescales of other species are ܱ(1). It is expected that the toy 
problem can be implicitly integrated with a time step h between ߬ and 1. Based on such selected 
integration time steps, R is the only  fast species, and R2 and R3 are fast reactions. It is further 
noted that species A and R can be solved as a self-consistent system with source terms as 

 ܵ = −݇ଷܴܣఈ, g = −݇ଵܣ  
 ܵோ = −݇ଶܴ, gோ = ݇ଵܣ + ݀  

The iteration matrix can be written as 

ۯ = ێێێۏ
0ۍ ൬1 + ℎ2 1߬൰ିଵ ℎ2 ݇ଵ0 ℎଶ4 (−݇ଷܴܣߙఈିଵ) ൬1 + ℎ2 1߬൰ିଵ ݇ଵ + ℎ2 (−݇ଷܴఈ − ݇ଵ)ۑۑۑے

ې = 0 ܱ(߬)0 ܱ(ℎ)൨	 (11)

 
and the spectral radius of A is ܱ(ℎ), being consistent to Eq. (9). The relative errors in the 

midpoint rates భమ for species k and a variable Φ are defined as  

ߝ  = ቤ݇ଵଶ, − ݇ଵଶ,ାଵቤ
ቤ݇ଵଶ, + ݇ଵଶ,ାଵቤ , ߝ = |Φ − Φா||Φ + Φா| (12)

where the superscript E indicates the accurate solution. Figure 1 shows the relative errors at 
different iterations within a single integration step, starting from the accurate solution at ܣ = 0.5. 
It is seen that the relative errors decrease with a slope of h on the log plot, as predicted by Eq. 
(11). Two iterations are needed for A and three needed for R to achieve second order accuracy. 
Figure 2 further shows the local relative errors in the concentrations of A and R incurred by one 
integration time step started at ܣ = 0.5 . It is seen in Fig. 2a that, with two iterations per 
integration time step, the single-step relative errors in A and B are both ܱ(ℎଷ), while R needs 
another iteration to achieve second-order accuracy as shown in Fig. 2b. 

 
Figure 1. Relative errors in rates k between two successive iterations with respect to the number 
of iterations for ߙ = 0.5, ℎ = 10ିଷ in the toy problem. Open symbols: relative errors in the rate 
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of A, closed symbols: relative errors in the rate of R. Circles: ߬ = 10ି, triangles: ߬ = 10ି଼. 
Dashed line: trend line with a slope of h. 
 

 
Figure 2. Local relative errors as function of integration time step size in species concentrations 
with (a) two iterations and (b) three iterations per integration step. Dotted line: trend line with 
slope of 2. Dashed line: trend line with a slope of 3. 
 
3.2 Comparison with the Strang splitting scheme 

Figure 3 shows the relative error in the concentration of species B measured at ܣ = 0.5 with 
different splitting time step Δݐ and integration time step h, respectively. It is seen that the Strang 
splitting scheme starts to show second-order behavior only when the splitting time step is close 
to and smaller than ߬. In comparison, AHI1 and AHI2 show expected orders of accuracy across 
the entire range of integration time steps, and the accuracy was improved by many orders of 
magnitudes compared with the splitting scheme. 

 
Figure 3. Relative errors in B for the toy problem with ߙ = 0.5, measured at the time when 
A=0.5, as function of the time step size, for two different timescales of R. Triangles: ߬ = 10ି଼. 
Circles: ߬ = 10ି. Dashed and dotted lines: slope of 1 and 2, respectively. 
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3.3 Performance of AHI2 with detailed chemistry 

The accuracy of AHI2 is further tested in the auto-ignition of H2/air under constant pressure 
using detailed chemistry [29]. Note that no transport term is involved. Figure 4 shows the species 
mass fractions, temperature and relative errors of AHI2 for the auto-ignition case. Figure 4a 
shows that the solution from AHI2 agrees with that from DASAC using relative error tolerance 
of 10-8 and absolutely error tolerance of 10-20. Taking the solution from DASAC as an accurate 
solution, Fig. 4b shows the relative errors in AHI1 and AHI2, respectively. It is seen that the 
errors from AHI2 is substantially reduced in comparison with AHI1. 

 
Figure 4. (a) Profiles of species mass fraction and temperature in constant-pressure auto-ignition 
of stoichiometric hydrogen/air, calculated AHI2 with ℎ = 10ିݏ (symbols), in comparison with 
an accurate solution obtained using DASAC (solid lines). (b) Relative errors in species 
concentrations and temperature in AHI1 (solid lines) and AHI2 (dashed lines). 

 
Figure 5. Local relative errors in different variables of AHI2 as function of integration time step 
size for constant-pressure auto-ignition of stoichiometric hydrogen/air. Dotted line: slope of 3. 
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defines the ignition state. The relative errors in different variables incurred in the integration step 
are plotted in Fig. 5. A linear dependence with slope of 3 can be clearly seen, and the overall 
second-order accuracy is confirmed. 

The efficiency of AHI2 is then tested in constant-pressure auto-ignition and unsteady PSR, 
which involves a homogeneous mixing term, using different reaction models, including a 9 
species detailed model for hydrogen/air [29], a 32-species skeletal model for ethylene/air [30], 
and the 111-species detailed USC-Mech II reaction model [31] using methane as fuel. 

The auto-ignition cases are initialized with stoichiometric fuel/air mixture at p = 1 atm, and ܶ = ܭ	1200 . The unsteady PSR cases are initialized with the steady state solution with 
temperature perturbed by +10 K such that the reactor relaxes toward the steady state solution 
during the time integration. The inlet streams of the PSRs consist of fresh stoichiometric fuel/air 
mixtures at ܶ 	= -and the residence time is set to ߬௦ = 1 ms. All the cases for auto ,ܭ	300	
ignition and unsteady PSR are integrated from ݐ	 = with a fixed time step size of ℎ ݏ	0.05	ݐ	0	 = 10ିs. All the systems have mostly reached steady state at the end of the integration. For 
the auto-ignition cases, the total CPU time of AHI is normalized by the cost with all the species 
and reactions being solved implicitly. For the unsteady PSR cases, the CPU time is normalized 
by that of Strang splitting scheme, where the chemistry sub-step is integrated using VODE with 
analytic Jacobian, and the transport is solved explicitly. Figure 6 shows the corresponding 
speedup using AHI1 and AHI2, respectively. Note that the time saving for the auto-ignition cases 
are attributed to the reduced number of variables to be solved implicitly. It is seen that the time 
saving increases with the size of reaction models, indicating a larger extent of reduction in the 
number of fast species for larger reaction models. 

 
Figure 6. CPU time for the integration of constant-pressure auto-ignition normalized by that of 
fully implicit integration, and for unsteady PSR normalized by that of the Strang splitting scheme 
using VODE with analytic Jacobian for chemistry integration, for stoichiometric different 
fuel/air mixtures at atmospheric pressure, inlet temperature of 300 K, and residence time of 1 ms. 
Solid lines: AHI1, dashed lines: AHI2. 

 
Significantly larger time savings are observed for the unsteady PSR cases. The speedup 

factors of 5~10, compared with the splitting scheme, are primarily attributed to the effect of 
transport term on fast chemistry modes, as discussed in the previous AHI study [21]. As a result, 
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the splitting schemes requires multiple sub-steps in each chemical sub-step to exhaust the 
activated fast chemical modes, while such an issue is not present in the AHI schemes. As such, 
the AHI methods can be substantially more efficient than the splitting schemes even if adaptive 
fast chemistry is not involved, i.e. all the species and reactions are treated implicitly. It is further 
noted that the efficiencies of AHI and AHI2 only differ slightly for the auto-ignition and 
unsteady PSR cases.  This is because the Jacobian of the fast chemistry doesn’t need to be 
updated during the iterative procedure, such that the overhead to achieve the second order 
accuracy is rather small. 
 
4. Conclusions 

A second-order adaptive hybrid scheme is developed for stiff chemistry integration and 
validated. The convergence rate of the iterative procedure to achieve second order accuracy is 
analyzed based on the spectral radius of the iterative matrix. It is shown that only about three 
iterations are needed to achieve the expected accuracy for both the toy problem and detailed 
chemistry. Error control of AHI1 and AHI2 is compared with the Strang splitting scheme using 
the toy problem, and the AHI schemes show dramatically improved accuracy. 

The accuracy and efficiency of AHI2 are further studied with detailed chemistry, and second-
order accuracy is verified in constant-pressure auto-ignition with detailed chemistry for H2/air, 
and AHI2 achieves substantially smaller relative errors in the auto-ignition case. Compared with 
the fully implicit scheme, AHI schemes reduce computation primarily through the reduction in 
the number of variables to be solved implicitly, and such time saving increases with the size of 
the reaction models, reaching ~80% for the 111-species detailed USC-Mech II. For the unsteady 
PSR cases involving a transport term, the AHI schemes achieved significant speedup compared 
to the splitting scheme, due to need to exhaust the reactive fast chemical modes in each 
chemistry sub-step of the splitting schemes. Overall, the AHI schemes achieved speedup factors 
of 5-10 compared with the splitting schemes in the unsteady PSR cases. In term of accuracy, 
AHI2 is shown to be significantly more accurate than AHI1, while the computational cost is only 
slightly increased. 
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