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In this work, consistent lattice Boltzmann (LB) methods for incompressible axisymmetric flows are developed
based on two efficient axisymmetric LB models available in the literature. In accord with their respective
original models, the proposed axisymmetric models evolve within the framework of the standard LB method
and the source terms contain no gradient calculations. Moreover, the incompressibility conditions are realized
with the Hermite expansion, thus the compressibility errors arising in the existing models are expected to be
reduced by the proposed incompressible models. In addition, an extra relaxation parameter is added to the
Bhatnagar-Gross-Krook collision operator to suppress the effect of the ghost variable and thus the numerical
stability of the present models is significantly improved. Theoretical analyses, based on the Chapman-Enskog
expansion and the equivalent moment system, are performed to derive the macroscopic equations from the LB
models and the resulting truncation terms (i.e., the compressibility errors) are investigated. In addition, numerical
validations are carried out based on four well-acknowledged benchmark tests and the accuracy and applicability
of the proposed incompressible axisymmetric LB models are verified.
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I. INTRODUCTION

Axisymmetric fluid flow and heat and mass transfer in
cylindrical systems are widely encountered in engineering
practices. Taking advantage of the axisymmetric condition, the
three-dimensional (3D) axisymmetric flow can be reduced to
a quasi-2D problem in the meridian plane, which significantly
reduces the computational requirements and avoids the curve
boundary treatments. Therefore, although the 3D lattice
Boltzmann (LB) method is more realistic and accurate for
axisymmetric flow [1–3], much effort has been devoted to
developing 2D axisymmetric LB models [4–11].

Specifically, the existing axisymmetric LB models are
divided into two categories: the bottom-up models and the
top-down models. In the bottom-up models, the LB equation
and the equilibrium distribution functions are designed se-
quentially and thus the effect of axisymmetry is considered
at the distribution function level. In particular, starting from
the axisymmetric Boltzmann equation, a kinetic theory based
model was proposed by Guo et al. [10], in which reduced
distribution functions were defined in the meridian plane
and the corresponding equilibrium distribution functions were
directly derived from the Maxwellian equilibrium distribution.
The LB equations in Ref. [10] were directly the discrete
evolution equations for the reduced distribution functions. It
has been proven that the axisymmetric Navier-Stokes (NS)
equations can be derived from the Guo et al. [10] model
and all the velocity components were described in the same
fashion. Moreover, the source terms were directly derived from
the relevant parts of the evolution equations for the reduced
distribution functions and contained no velocity gradient
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terms. The above explicit kinetic theory origin confers on
the Guo et al. [10] model a solid physics basis and makes
it easy for generalization. The Guo et al. [10] model and
its derivative models have achieved successful application for
various axisymmetric flows [12–17].

As for the top-down models, coordinate system transforma-
tions are performed such that the axisymmetric NS equations
in the cylindrical system are reformulated as pseudo-Cartesian
ones. The extra terms caused by the coordinate transformations
are regarded as source terms and are directly added to
the standard LB equation. Therefore, the top-down models
are developed within the framework of the conventional
LB method and axisymmetric conditions are realized at the
macroscopic level. In this regard, the LB method is used as
a numerical solver for the Cartesian macroscopic convection
diffusion equations. The first axisymmetric LB model was
proposed by Halliday et al. [4] in the top-down fashion,
which led to incorrect momentum equations with a missing
term related to the radial velocity component. Afterward,
Lee et al. [5] and Reis and Phillips [6,18,19] proposed
improved models and accurate macroscopic equations were
obtained. As discussed by Huang and Lu [20], although the two
improved models were developed independently, they were
proven to be basically identical. Based on the model proposed
by Halliday et al. [4], a hybrid method was developed by
Peng et al. [21] for axisymmetric rotating thermal flows and
subsequently the numerical stability was improved by Huang
et al. [22]. In addition, the Halliday et al. [4] model was
also extended for application to multiphase flows by Premnath
and Abraham [23]. However, as claimed by Zhou [8], the
above top-down models suffered from the complicated source
terms. In particular, the forcing source term contained more
than ten items in the improved models when the missing term
in the model of Halliday et al. [4] was added. In order to
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simplify the source terms, Chen et al. [24,25] proposed an
alternative axisymmetric LB model based on the vorticity
stream equation. Although the source terms in the Chen et al.
[24,25] model were simpler, the model had to solve a Poisson
equation at each time step and the vorticity at the boundary was
hard to determine, thus its computation efficiency was highly
compromised. Furthermore, an efficient model was proposed
by Zhou [8], in which the source terms were simply the extra
terms in the transformed pseudo-Cartesian equations and the
centered scheme was applied to remove the discrete lattice
effects.

It should be noted that velocity gradient terms exist in
the extra terms due to the coordinate transformation, which
leads to additional finite-difference calculations in the above-
mentioned top-down LB models [4–6,8,18,23,26,27]. In the
axisymmetric thermal model proposed by Li et al. [28],
the concept of evaluating the temperature gradient terms
with the nonequilibrium part of the distribution function
was proposed and then applied to the general hydrodynamic
equations [7]. The Zhou [8] model was subsequently revised
by incorporating the idea the Li et al. model [28] and the
revised model was then extended to the application of general
axisymmetric convection-diffusion equations [29] and even
axisymmetric compressible flows with low Mach number Ma
[30]. Therefore, the improved axisymmetric model proposed
by Li et al. [7] and the revised model by Zhou [9], as well as
their derivative models, are the most efficient top-down models
to date, since the source terms are simple and the gradient
calculations are avoided. However, as demonstrated in the
Chapman-Enskog analysis, the derived macroscopic equations
from the two models are compressible and thus compressibility
errors arise when incompressible axisymmetric flows are
considered.

In this work, incompressible LB models for axisymmetric
flows are proposed within the framework of the two efficient
top-down models [7,9] and thus consistent LB methods for
incompressible axisymmetric flows are developed. Incom-
pressibility conditions are directly introduced by revising the
moment equations of the standard LB model and then the
equilibrium distribution functions and the relevant source
terms are obtained from the revised moments by using
the Hermite tensorial polynomials [31–33]. In addition, a
set of computing formulas for the macroscopic variables is
proposed in accord with the modified moment equations. In
particular, the pressure formula in the present models is derived
from the second-order moment of the distribution function
with the moment of the nonequilibrium part obtained from
the Chapman-Enskog analysis. In addition, starting from the
ideas of the multiple-relaxation-time (MRT) model [34–36]
and the regularized lattice Bhatnagar-Gross-Krook (RLBGK)
model [37,38], an additional relaxation parameter pertaining
to the “ghost” variables is added to the Bhatnagar-Gross-
Krook (BGK) collision operator, which highly enhances the
numerical stability of the present models while having no
effect on the evolution of the hydrodynamic variables. The
present incompressible models retain the advantages from their
corresponding original counterparts in that they are consistent
with the conventional LB method and the source terms are
simple and contain no gradient terms. Moreover, the recovered
macroscopic equations and the order of the compressibility

errors of the involved LB models are analyzed theoretically
with the Chapman-Enskog analysis and the equivalent moment
system in the diffusive scaling [39]. Furthermore, numerical
validations for the present models are carried out with various
test cases. It is demonstrated that the numerical results from
the present models agree well with the reference solutions,
and the compressibility errors in the Li et al. model [7] and
the revised Zhou [9] model are effectively reduced.

II. FORMULATIONS

A. Coordinate transformations of the macroscopic equations

The macroscopic equations for incompressible axisymmet-
ric flows in cylindrical coordinate system are given as

∂uj

∂xj

+ ur

r
= 0, (1a)

ρ

[
∂ui

∂t
+ ∂

∂xj

(uiuj )

]
= − ∂p

∂xi

+ μ
∂2

∂xj∂xj

ui + μ

r

∂ui

∂r

− μur

r2
δir − ρuiur

r
, (1b)

where i and j denote, respectively, the r and z coordinates
in the meridian plane and ρ, ui , p, and μ are, respectively,
the fluid density, velocity, pressure, and dynamic viscosity.
With the following relation derived from the incompressibility
continuity equation (1a):

μ
∂2ui

∂xj ∂xj

= ∂

∂xj

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ μ

r

∂ur

∂xi

− μur

r2
δir ,

(2)

the momentum equation (1b) is represented in a pseudo-
Cartesian coordinate system as

ρ

[
∂ui

∂t
+ ∂

∂xj

(uiuj )

]

= − ∂p

∂xi

+ ∂

∂xj

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]

+ μ

r

(
∂ui

∂r
+ ∂ur

∂xi

)
− 2μur

r2
δir − ρuiur

r
, (3)

while the macroscopic equations derived from the standard LB
equation are of the form

∂

∂t
ρ + ∂

∂xj

(ρuj ) = 0, (4a)

∂

∂t
(ρui) + ∂

∂xj

(ρuiuj ) = − ∂p

∂xi

+ ∂

∂xj

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
.

(4b)

Therefore, comparing Eq. (4b) with Eq. (3), the extra terms
in the latter are treated as source terms and the standard
LB method can be applied to describe the incompressible
axisymmetric flows.

023302-2



CONSISTENT LATTICE BOLTZMANN METHODS FOR . . . PHYSICAL REVIEW E 94, 023302 (2016)

B. Review on two efficient top-down axisymmetric LB models

1. Li et al. model

A modified LB equation was proposed in the Li et al. [7]
model

fα(x + ξαδt,t + δt) − fα(x,t)

= δt

2

[
�α|(x,t) + �α|(x+ξαδt,t+δt)

]
+ δt

2

[
Sα|(x,t) + Sα|(x+ξαδt,t+δt)

]
− δt

ξαr

r

(
fα − f (eq)

α

)|(x,t), (5)

where �α = − 1
τf

(fα − f
(eq)
α ) is the BGK collision operator

and τf is the single relaxation time [7]. Notably, the above
equation is directly derived from the trapezium rule based time
discretization of the discrete Boltzmann equation. In addition,

the last term on the right-hand side of Eq. (5) is an innovative
way of representing the velocity gradients in the source terms
of Eq. (3). The remaining source terms in Eq. (3) are related
to Sα in Eq. (5) by

Sα =
[

(ξαi − ui)Fi

ρRT
− ur

r

]
f (eq)

α , Fi = −2μur

r2
δir , (6)

where R is the ideal gas constant, T is the fluid temperature,
and RT = c2

s is constant for isothermal flows. The equilibrium
distribution function in Eq. (5) is consistent with that of the
standard LB model

f (eq)
α = ρwα

[
1 + u · ξα

RT
+ (u · ξα)2

2(RT )2 − u2

2RT

]
, (7)

where ξα and wα are, respectively, the discrete particle velocity
vectors and the corresponding weight coefficients of the D2Q9
lattice model:

ξα =
⎧⎨
⎩

(0,0), α = 0
c{cos[(α − 1)π/2], sin[(α − 1)π/2]}, α = 1,2,3,4√

2c{cos[(2α − 1)π/4], sin[(2α − 1)π/4]}, α = 5,6,7,8,

(8a)

w0 = 4/9, w1,2,3,4 = 1/9, w5,6,7,8 = 1/36. (8b)

The lattice speed c in Eq. (8a) is defined as c = δx/δt and
is related to cs by c = √

3cs and δx and δt are, respectively,
the spatial and time steps. For the convenience of numerical
implementation, the implicitness in Eq. (5) is eliminated by
reconstructing the distribution function

f̂α = fα − δt

2
(�α + Sα) (9)

and the evolution equation for f̂α is obtained from Eq. (5)
as

f̂α(x + ξαδt,t + δt) − f̂α(x,t)

= −ωα

[
f̂α(x,t) − f (eq)

α (x,t)
] + δt

(
1 − ωα

2

)
Sα, (10)

where the relaxation parameter is related to the discrete particle
velocity by

ωα =
(

1 + τδtξαr

r

)/(
τ + 1

2

)
, (11)

with τ = τf /δt the dimensionless relaxation time. Then,
with the moment equations of the original distribution
function

ρ =
∑

α

fα =
∑

α

f (eq)
α ,

ρui =
∑

α

fαξαi =
∑

α

f (eq)
α ξαi,

ρuiuj + pδij =
∑

α

f (eq)
α ξαiξαj , (12)

the macroscopic variables are calculated from f̂α as

ρ =
∑

α

f̂α − δt

2

ρur

r
,

(13)

ρui =
∑

α

f̂αξαi − δt

2

(
ρuiur

r
+ 2μur

r2
δir

)
.

In particular, the computing formula for the fluid velocity is
further revised as

ui =
∑

α f̂αξαi∑
α f̂α + (δtμ/r2)δir

. (14)

Then the Li et al. [7] model is extended to solve
the axisymmetric convection-diffusion equation of the
form

∂(ρφ)

∂t
+ ∂

∂xj

(ρφuj ) = ∂

∂xj

(
λ

∂φ

∂xj

)
+ λ

r

∂φ

∂r
+ ϕ, (15)

where φ and λ are, respectively, the scalar variable and the
associated diffusion coefficient. Specifically, λ is the thermal
diffusion coefficient α when φ = T and λ is the dynamic
viscosity μ when φ = uθ . The source term ϕ is defined as

ϕ =
{− ρur

r
T , φ = T

− 2ρuθ ur

r
− μuθ

r2 , φ = uθ .
(16)

With the D2Q4 lattice model

ξ k = c{cos[(k − 1)π/2], sin[(k − 1)π/2]}, k = 1,2,3,4

(17)
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and the corresponding weight coefficient wk = 1/4, the LB
equation (10) is rewritten as

ĝk(x + ξ kδt,t + δt) − ĝk(x,t)

= −ωk[ĝk(x,t) − g
(eq)
k (x,t)] + δt

(
1 − ωk

2

)
Sg

α, (18)

where ĝk is the distribution functions accounting for φ and the
diffusion coefficient is determined as λ = τgδtρRT ′ with ωk =
(1 + τgδtξkr

r
)/(τg + 1

2 ). The relevant equilibrium distribution

g
(eq)
k is defined as

g
(eq)
k = ρφwk

(
1 + u · ξ k

RT ′

)
(19)

and c′
s = √

RT ′ in the D2Q4 lattice model is related to the
lattice speed by c = √

2c′
s . In addition, the discrete source

term in Eq. (18) is expressed as

Sg
α = wkϕ

(
1 + u · ξ k

RT ′

)
. (20)

The second-order velocity terms in Eq. (20) can be removed to
improve the computation efficiency and such a simplification
has been thoroughly validated by previous work [8,9,29].
Hence, Eq. (20) becomes

Sg
α = wkϕ. (21)

Finally, the azimuthal velocity component uθ and the fluid
temperature T are derived from

ρT =
∑

k

ĝk − ρ
urT δt

2r
, (22a)

ρuθ =
∑

k

ĝk − δt

2

(
2ρuθur

r
+ μuθ

r2

)
. (22b)

If the rotation is involved, the source term in Eq. (6) should be
further generalized as

Fi = −
(

2μur

r2
− ρu2

θ

r

)
δir . (23)

It should be noted that the macroscopic equations recovered
from the Li et al. [7] model are compressible, as demonstrated
by the Chapman-Enskog analysis in Appendix A, which may
lead to compressibility errors since the incompressible conti-
nuity equation is necessary for the coordinate transformations
from Eq. (1) to Eq. (3). In addition, another challenging issue
is the calculation of the macroscopic variables that are coupled
with each other and are hard to determine independently. In
Ref. [7], the trapezium rule is not applied to the source term in
the evolution of azimuthal velocity distribution function and
a constant density ρ0 is introduced. Thus, the macroscopic
variable in Li et al. [7] is calculated in the following manner:

uθ =
∑

k

ĝk/ρ0 for φ = uθ , (24a)

ui =
∑

α f̂αξαi + ρ0u
2
θ

2r
δir∑

α f̂α + (δtρ0ν/r2)δir

, (24b)

ρ =
∑

α

f̂α

/(
1 + δt

2

ur

r

)
, (24c)

T =
∑

k

ĝk

/
ρ0

(
1 + urδt

2r

)
for φ = T . (24d)

2. Zhou model

The LB equation adopted in the Zhou [9] model is given as

fα(x + ξαδt,t + δt) − fα(x,t)

= −τα

(
fα − f (eq)

α

)∣∣
(x,t) + wαθδt + wα

RT
Fiξαiδt, (25)

which differs from that of the Li et al. [7] model in
that the time discretization is implemented by integrating
along the characteristic line instead of the trapezium rule,
hence the reconstructed distribution function in Eq. (9)
is avoided, which is highly beneficial for simplifying the
computation of the macroscopic variables [9]. Based on the
idea in Ref. [7], an effective relaxation time is also introduced
in Ref. [9] to reproduce the velocity gradient source terms

τα =
{

1
τ
, r = 0

1
τ

[
1 + (2τ−1)ξαr δt

2r

]
, r �= 0.

(26)

The equilibrium distribution function defined in Eq. (7) is also
applied in the Zhou [9] model. A distinct feature of the Zhou
[9] model is that the source terms in Eq. (25) are defined as

θ = −ρur

r
, (27a)

Fi = −ρuiur

r
− 2μur

r2
δir , (27b)

where θ and Fi account for the source terms in, respectively, the
continuity and momentum equations. In addition, the centered
scheme is applied to remove the discrete lattice effects

θ = θ (x + ξαδt/2,t + δt/2), (28a)

Fi = Fi(x + ξαδt/2,t + δt/2), (28b)

which can be realized in any of the following ways with ψ for
either θ or Fi :

ψ(x + ξαδt/2,t + δt/2)

= 1
2 [ψ(x,t) + ψ(x + ξαδt,t + δt)] (implicit), (29a)

ψ(x + ξαδt/2,t + δt/2)

= 1
2 [ψ(x,t) + ψ(x + ξαδt,t)] (semi-implicit), (29b)

ψ(x + ξαδt/2,t + δt/2) = ψ(x,t) (explicit). (29c)

It should be noted that the implicit form of the centered scheme
agrees exactly with the integration of the source term by the
trapezium rule, which is the force scheme, proven to be free
of the discrete lattice effects, proposed by Guo et al. [40].
However, iterations are necessary in practical simulations due
to the implicitness of Eq. (29a). The explicit form is the most
efficient but reduces the centered scheme to the direct force
scheme, which suffers from the discrete lattice effects and
the appearance of spurious terms in the resulting macroscopic
equations [40]. Therefore, as a compromise between numerical
efficiency and overall accuracy, the semi-implicit form in
Eq. (29b) is adopted in the present work. Moreover, only
the zeroth-order term for the first source term wαθδt and
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the first-order term for the second source term wα

RT
Fiξαiδt is

considered in the Zhou [9] model, which has no effect on
the order of the overall accuracy but makes the model more
efficient.

As another advantage of the Zhou [9] model, the macro-
scopic variables are efficiently determined as

ρ =
∑

α

fα, ui =
∑

α

fαξαi/ρ. (30)

It is demonstrated in the Chapman-Enskog analysis in Ap-
pendix B that the macroscopic equations recovered from the
Zhou [9] model [i.e., Eq. (B6)] are consistent with those
obtained from the Li et al. [7] model presented in Eq. (A10).
However, a different definition of the kinematic viscosity is
introduced as

ν = (
τ − 1

2

)
RT δt. (31)

With the LB equation of the form

gk(x + ξ kδt,t + δt) − gk(x,t)

= −τk

(
gk − g

(eq)
k

)∣∣
(x,t) + wkθ

gδt (32)

and the equilibrium distribution function in Eq. (19), the Zhou
[9] model can also be applied to solve the axisymmetric
convection-diffusion equation (15). The relaxation parameter
τk is determined as

τk =
⎧⎨
⎩

1
τg

, r = 0

1
τg

[
1 + (2τg−1)ξkr δt

2r

]
, r �= 0,

(33)

where the diffusion coefficient λ is related to τg as

λ = (
τg − 1

2

)
RT ′δt. (34)

The source term in Eq. (32) is given as

θg =
⎧⎨
⎩

− ρur

r
T

∣∣
(x+ξ kδt/2,t+δt/2), φ = T

−( 2ρuθ ur

r
+ μuθ

r2

)∣∣
(x+ξ kδt/2,t+δt/2), φ = uθ .

(35)

Then the macroscopic scalar variables T and uθ are efficiently
calculated as

uθ =
∑

k

gk/ρ for φ = uθ , (36a)

T =
∑

k

gk/ρ for φ = T . (36b)

Again, if the azimuthal velocity component is included, the
forcing source term in Eq. (27b) should be revised as

Fi = −ρuiur

r
− 2μur

r2
δir + ρu2

θ

r
δir . (37)

It is demonstrated that the Zhou [9] model share some
similarities with the Li et al. [7] model in that both models are
developed within the framework of the conventional standard
LB model and no extra modifications are implemented on
the LB equation and the relevant equilibrium distribution
functions. In addition, the same idea for reproducing the
velocity and scalar gradient source terms is adopted in
both models. However, the centered scheme is adopted in
Ref. [9] for the time discretization instead of the trapezium

rule in Ref. [7]. As a direct consequence, the reconstructed
distribution function is avoided in Ref. [9] and the calculations
of the macroscopic variables are much simpler and more
efficient. Furthermore, two factors lead to the difference in
accuracy: (i) The semi-implicit form of the centered scheme
in Eq. (29b), which is unable to avoid the discrete lattice effects
completely, is adopted in Ref. [9] and (ii) the definitions
of the source terms in Ref. [7] are more complete than
those in Ref. [9]. The errors caused by these two factors
are both of the same order as the truncation terms and thus
the degree of the overall accuracy of Ref. [9] is not affected.
Notably, the macroscopic equations derived from both models
are compressible and inconsistent with the incompressible
axisymmetric NS equations (1) and thus compressibility errors
arise.

C. Consistent LB methods for
incompressible axisymmetric flows

In order to reduce the compressibility errors and derive
the standard incompressible axisymmetric NS equations (1),
the incompressibility conditions are incorporated into the two
models reviewed above. More explicitly, the incompressible
LB model proposed in our recent work [41,42] is extended
to the application of the axisymmetric flows based on the
framework provided by Li et al. [7] and Zhou [9].

1. Equilibrium distribution function

By assuming that the fluid density is a constant and the fluid
pressure evolves independently, the moment equations of the
continuous distributions are modified as

ρ0 =
∫

f dξ =
∫

f (eq)dξ ,

ρ0u =
∫

f ξdξ =
∫

f (eq)ξdξ ,

ρ0uiuj + pδij =
∫

f (eq)ξiξj dξ . (38)

The Hermite tensorial polynomials are introduced as

ω(ξ̂ ) = 1

2π
e−ξ̂

2
/2, (39)

H
(n)
i (ξ̂ ) = (−1)n

ω(ξ̂ )
∇(n)

i ω(ξ̂ ), (40)

where ω(ξ̂ ) is the weight function and ξ̂ = ξ/
√

RT is the
dimensionless particle velocity [31,32]. The three leading-
order Hermite polynomials are expressed as

H (0)(ξ̂ ) = 1, (41a)

H
(1)
i (ξ̂ ) = ξ̂i , (41b)

H
(2)
ij (ξ̂ ) = ξ̂i ξ̂j − δij . (41c)

Then the dimensionless distribution function f̂ = RT
ρ0

f (eq) is
expanded as

f̂ (ξ̂ ,x,t) = ω(ξ̂ )
∞∑

n=0

1

n!
a

(n)
i (x,t)H (n)

i (ξ̂ ), (42)
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where the expansion coefficient a
(n)
i is related to the corre-

sponding moment equations as

a
(n)
i (x,t) =

∫
f̂ H

(n)
i (ξ̂ )d ξ̂ = 1

ρ0

∫
f (eq)H

(n)
i (ξ̂ )dξ . (43)

Thus, the equilibrium distribution function with the inclusion
of the incompressibility conditions is derived from the modi-
fied moments in Eq. (38)

f (eq) = ρ0

2πRT
exp

(− ξ 2

2RT

)[
1 + u · ξ

RT
+ (u · ξ )2

2(RT )2 − u2

2RT

+
(

p

ρ0RT
− 1

)(
ξ 2

2RT
− 1

)]
(44)

and subsequently discretized with the D2Q9 lattice model

f (eq)
α = ρ0wα

{
1 + u · ξα

RT
+ (u · ξα)2

2(RT )2 − u2

2RT

+
(

p

ρ0RT
− 1

)(
ξ 2

α

2RT
− 1

)}
. (45)

In addition, the discretization of continuous moment equations
are also realized as

ρ0 =
∑

α

fα =
∑

α

f (eq)
α ,

ρ0ui =
∑

α

fαξαi =
∑

α

f (eq)
α ξαi,

ρ0uiuj + pδij =
∑

α

f (eq)
α ξαiξαj . (46)

2. Incompressible method based on the Li et al. model

A LB equation slightly different that in Ref. [7] is
introduced as

f̂α(x + ξαδt,t + δt) − f̂α(x,t)

= −ωα

[
f̂α(x,t) − f (eq)

α (x,t)
] + δt

(
1 − ωα

2

)
Sα

− (ωJ − ωf )
3

8
wαghost

α ξα · J, (47)

where the last term is added to improve the numerical stability
of the present incompressible model with ωf = 2/(2τ + 1)
being the constant part of ωα . In particular, the equilibrium
distribution functions in Eqs. (7) and (45) can be regarded
as a second-order expansion in terms of the first three tensor
Hermite polynomials 1, ξ , and ξξ − 1

3I . With the D2Q9 lattice
model, the components of tensor polynomials are composed
of the six nine-dimensional lattice vectors

|1〉 = (1,1,1,1,1,1,1,1,1)T , (48a)

|ξαr〉 = (0,1,0, − 1,0,1, − 1, − 1,1)T , (48b)

|ξαz〉 = (0,0,1,0, − 1,1,1, − 1, − 1)T , (48c)∣∣ξ 2
αr − 1

3

〉 = 1
3 (−1,2, − 1,2, − 1,2,2,2,2)T , (48d)

|ξαrξαz〉 = (0,0,0,0,0,1, − 1,1, − 1)T , (48e)∣∣ξ 2
αz − 1

3

〉 = 1
3 (−1, − 1,2, − 1,2,2,2,2,2)T , (48f)

which are orthogonal with respect to the weighted inner
product 〈p,q〉 = ∑

α wαpαqα , as a direct analogy to the
orthogonality of the continuous tensor Hermite polynomials.
Furthermore, an R9 orthogonal basis is completed by intro-
ducing the ghost vectors ghost

α and ghost
α ξα ,

∣∣ghost
α

〉 = 9
2

(|ξα|4 − 15
9 |ξα|2 + 2

9

)
= (1, − 2, − 2, − 2, − 2,4,4,4,4)T , (49a)∣∣ghost

α ξαr

〉 = (0, − 2,0,2,0,4, − 4, − 4,4)T , (49b)

|ghost
α ξαz〉 = (0,0, − 2,0,2,4,4, − 4, − 4)T , (49c)

and the corresponding macroscopic variables, ghost variables,
are defined as

N =
∑

α

f̂αghost
α , (50a)

J =
∑

α

f̂αghost
α ξα, (50b)

which are directly the high-order moments and have no explicit
effect on the evolution of the hydrodynamic variables (i.e., the
nonghost variables) [43–46]. With the complete orthogonal
basis given in Eqs. (48) and (49), the single relaxation time
collision model in Ref. [7] in Eq. (10) with the exclusion
of source terms representing the axisymmetric conditions
becomes

�α = −ωf

[
f̂α(x,t) − f (eq)

α (x,t)
]

(51a)

and is generalized as (refer to [47] for derivation details)

�′
α = −wα

[
9
2 s3�

(neq)
rr Qαrr + 9s4�

(neq)
rz Qαrz

+ 9
2 s5�

(neq)
zz Qαzz + ghost

α

(
1
4 s6N + 3

8 s7Jrξαr

+ 3
8 s8Jzξαz

)]
, (51b)

where Qα = ξαξα − 1
3 I and �(neq) =∑

α (f̂α − f
(eq)
α )(ξαξα − 1

3 I) are, respectively, the discrete
second-order Hermite polynomial and the relevant
nonequilibrium moment and thus the MRT collision
model based on the basis in Eqs. (48) and (49) is obtained.
The moment components are simply derived from the moment
equations of the distribution function and the MRT model
would degrade to the BGK model in Eq. (51a) when all the
relaxation parameters si are equal to ωf . As discussed by
Dellar [44], the coupling between the ghost variables and
the hydrodynamic variables is mainly responsible for the
numerical instability of the LB simulation. Therefore, in the
RLBGK scheme [37,38], both N and J are removed for
the purpose of stabilizing the LB method with the prescribed
relaxation parameters

s3 = s4 = s5 = ωf , s6 = s7 = s8 = 1. (52)

Thus, the postcollision distribution function f̂ +
α depends only

on the hydrodynamic moments as

f̂ +
α (x,t) = f̂ (eq)

α (x,t) + wα
9
2 (1 − ωf )�(neq) : Qα, (53)

which accords well with the original idea by Ladd [48,49]. In
the present model, the last term in Eq. (47) is introduced in
accordance with the idea of the RLBGK scheme to suppress
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the effect of the ghost variable J . Specifically, if the additional
relaxation parameter ωJ equals 1, the effect of the ghost
variable J is totally removed. Since the variable J is mainly
responsible for the coupling with the hydrodynamic variables,
the numerical stability of the present method is effectively
enhanced by the additional relaxation term and the modified
BGK collision operator adopted in Eq. (47) is essentially also
a specific case of the general MRT operator in Eq. (51b) with

s3 = s4 = s5 = s6 = ωf , s7 = s8 = ωJ . (54)

The incompressibility conditions are also incorporated into
the source terms in Eq. (47) as

Sα = S1
α + S2

α, (55a)

S1
α = −ρ0ur

r
wα

(
1 + u · ξα

RT

)
, (55b)

S2
α = wα

[
Fiξαi

RT
+ uiFj ξαiξαj

(RT )2
− Fiui

RT

]
,

Fi = −
(

2ρ0νur

r2
− ρ0u

2
θ

r

)
δir , (55c)

which are the direct Hermite expansion pertaining to the
moment constraints of the source terms∑

α

S1
α = −ρ0ur

r
,

∑
α

S1
αξαi = −ρ0uiur

r
, (56a)

∑
α

S2
αξαi = Fi,

∑
α

S2
αξαiξαj = Fiuj + Fjui. (56b)

Finally, the present incompressible model is completed
by the following computing formulas for the macroscopic
variables:

ui =
∑

α f̂αξαi + ρ0u
2
θ

2r
δir∑

α f̂α + (δtρ0ν/r2)δir

. (57)

The application of the present model for axisymmetric con-
vection diffusion equation is similar to the Li et al. [7] model
by setting the fluid density to be a constant ρ0. In addition, the
fluid pressure in the present model is calculated as

p =
(∑

α

f̂αξαiξαi − (2τ + 2)δtρ0RT
ur

r
− ρ0u2

)/
2,

(58)
which results from the second-order moment equations (see
Appendix D for details)∑

α

fαξαiξαj =
∑

α

(
f (eq)

α + f (neq)
α

)
ξαiξαj . (59)

Here f
(neq)
α is the nonequilibrium part of the distribution

function and its second-order moment is given by the
Chapman-Enskog analysis as∑

α

f (neq)
α ξαiξαj = −τδtρ0RT

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (60)

3. Incompressible method based on the Zhou model

A similar incompressible model is also proposed by
applying the idea of Zhou [9]. The LB equation in the Zhou

[9] model is rewritten as

fα(x + ξαδt,t + δt) − fα(x,t)

= −τα

(
fα − f (eq)

α

)∣∣
(x,t) −

(
ωJ − 1

τ

)
3

8
wαghost

α ξα · J

+wαθδt + wα

RT
Fiξαiδt, (61)

where the ghost variable J is directly determined as

J =
∑

α

fαghost
α ξα. (62)

The source terms are revised in accordance with the incom-
pressibility conditions

θ = −ρ0ur

r

∣∣∣∣
(x+ξαδt/2,t+δt/2)

, (63a)

Fi = −
(

ρ0uiur

r
+ 2ρ0νur

r2
δir − ρ0u

2
θ

r
δir

)∣∣∣∣
(x+ξαδt/2,t+δt/2)

.(63b)

Then the computing formula for fluid velocity is obtained as

ui =
∑

α

fαξαi/ρ0, (64)

while the fluid pressure is determined from the diagonal part
of the second-order moment equations (see Appendix D for
detailed deviations)

p =
(∑

α

fαξαiξαi − 2τδtρ0RT
ur

r
− ρ0u2

)/
2. (65)

The present incompressible model can also be extended
to solve the axisymmetric convection-diffusion equation by
simply prescribing the fluid density involved in Eq. (32) to
be ρ0.

To conclude, the incompressible LB models for axisym-
metric flows are developed here based on the ideas of two
consistent axisymmetric LB models. The present incompress-
ible models retain the advantages of the original models
[7,9] in that the framework of the conventional standard LB
method is preserved by the present incompressible models
and the source terms are simple and contain no velocity
gradients. However, the equilibrium distribution functions
are reconstructed with the inclusion of the incompressibility
conditions by applying the Hermite tensorial polynomials.
Furthermore, an additional relaxation parameter pertaining
to the ghost variable is introduced to improve the numer-
ical stability of the present models. The Chapman-Enskog
analysis in Appendixes A and B demonstrates that the
incompressible axisymmetric NS equations (1) are recovered
from both proposed incompressible models with truncation
terms of second order in Ma, which accords well with the
accuracy of the standard LB method when approximating
the incompressible NS equations. Furthermore, derivations of
the equivalent moment systems under the diffusive scaling
[39,41], in Appendix C, demonstrate that the constant density
assumption is helpful in reducing the truncation error terms,
therefore, the compressibility errors in the Li et al. [7] and Zhou
[9] models are expected to be decreased by the incompressible
models proposed here.
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D. Numerical results

In this section, the proposed incompressible models are
numerically validated by some representative tests: the Hagen-
Poiseuille flow, the cylindrical cavity flow, the natural con-
vection in an annulus between two coaxial cylinders, and the
swirling thermal flows in a cylindrical container. The boundary
conditions involved in the following tests, except for the peri-
odic boundary in the axial direction for the Hagen-Poiseuille
flow, are implemented by the nonequilibrium extrapolation
scheme [50,51], in which the distribution function is first
divided into two parts, i.e., the equilibrium part and the
remaining nonequilibrium part

fα = f (eq)
α + f (neq)

α . (66)

The unknown macroscopic variables at the boundary nodes are
determined approximately from the neighboring fluid nodes
and then the equilibrium part of the distribution function
f

(eq)
α is obtained from the definition in Eqs. (7) and (45). In

particular, as for the symmetry condition at r = 0, the physical
boundary constraints are given as (for r = 0)

∂�

∂r
= 0∀�, (67)

with which an arbitrary macroscopic variable � at the
symmetry axis is derived from the finite-difference stencil with
second-order accuracy

−3�n
i + 4�n

i+1 − �n
i+2

2δx
= ∂�

∂x

∣∣∣∣
i,n

. (68)

Subsequently, the nonequilibrium part of the distribution
function is also extrapolated from the nearest fluid nodes.
The resulting boundary scheme agrees well with the overall
accuracy of the LB method since the approximations of the
macroscopic variables and the extrapolated f

(neq)
α are both of

second-order accuracy.

1. Hagen-Poiseuille flow

The first test case is the Hagen-Poiseuille flow in a
cylindrical pipe, with the following analytical solution for axial
velocity distribution:

uz(r) = u0

(
1 − r2

R2

)
, (69)
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FIG. 1. (a) Axial velocity profile, (b) convergence of the global velocity error with respect to mesh resolution for the Hagen-Poiseuille
flow, (c) pressure distribution, and (d) global pressure error convergence.
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where u0 is the peak axial velocity at r = 0 and is related to
the constant driven force az by

u0 = azR
2/4ν, (70)

where R and ν are, respectively, the radius of the pipe and the
kinematic viscosity. The only dimensionless parameter, the
Reynolds number Re, is defined as Re = 2Ru0/ν. In addition,
the boundary conditions for the remaining boundaries are
provided as (for r = R)

ur = uz = 0 (71)

and the periodic condition in the z direction is applied for the
two ends of the pipe. First, a mesh resolution of Nz × Nr =
33 × 17, with Nz and Nr representing the number of lattice
nodes in the z and r directions, respectively, is adopted for the
test case with Re = 40 and τ = 0.65. As shown in Fig. 1(a),

the velocity profiles from the proposed models agree with each
other and both agree well with the theoretical solutions. Then
the convergence rates of the global errors are investigated for
the purpose of evaluating the overall accuracy of the proposed
models. A definition for the global error is introduced as

E(u) =
∥∥uz − u

analytical
z

∥∥
2∥∥u

analytical
z

∥∥
2

. (72)

The global velocity errors pertaining to various mesh resolu-
tions are plotted in Fig. 1(b). It is demonstrated that (i) the
global errors from all the LB models investigated converge
at the same rate; (ii) the two original models, i.e., those of
Li et al. [7] and Zhou [9], agree numerically; and (iii) the
incompressible model based on Zhou’s [9] is more accurate
than the two original models [7,9]. Since the radial velocity

r / R

z /
 R
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FIG. 2. Flow structure of the cylindrical cavity flow: (a) case A, (RA = 1.5, Re = 990); (b) case B, (RA = 1.5, Re = 1290); (c) case C,
(RA = 2.5, Re = 1010); and (d) case D, (RA = 2.5, Re = 2200).
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component vanishes and the driving force is constant in the
present test case, the source terms are extremely simple.
More complicated cases are necessary to further evaluate the
accuracy of the proposed models, which are given in the
following.

Furthermore, to further validate the accuracy of the pressure
formulas of the proposed incompressible axisymmetric models
[i.e., in Eqs. (58) and (65)], another test is carried out by
replacing the constant driven force az with fixed inlet and
outlet pressure difference, i.e., �p = pin − pout = azL, where
L is the length of the pipe channel. The quantitative pressure
distribution obtained from the present incompressible models
with a grid resolution of R = 16 is given in Fig. 1(c) to compare
against the analytical linear pressure distribution. In addition,
analogous to the global velocity error definition in Eq. (72), a
global pressure error is defined as

E(p) = ‖p − panalytical‖2

‖panalytical‖2
. (73)

The convergence of the global pressure errors at various
mesh resolutions is demonstrated in Fig. 1(d). It is concluded
from both Figs. 1(c) and 1(d) that pressure can be accurately
predicted by the pressure calculations of the present incom-
pressible models.

2. Cylindrical cavity flow

The second test adopted for the numerical validations is the
cylindrical cavity flow, which is driven by rotating the top lid at
a constant angular velocity �. The geometric configuration of
the cylindrical cavity is defined by its height H and radius R,
which leads to the definition of the aspect ratio RA = H/R.
The other dimensionless parameter, which reflects the flow
structures, is the Reynolds number Re = �R2/ν. In addition to
the symmetry condition at r = 0, no-slip boundary conditions
(i.e., ur = uz = uθ = 0) are imposed on the stagnant bottom
and cylindrical surface, and ur = uz = 0 and uθ = �r for
the top lid. Since the rotation makes the source terms in the
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FIG. 3. Axial velocity profiles of the cylindrical cavity flow obtained with an R = 100 lattice: (a) case A, (RA = 1.5, Re = 990); (b) case
B, (RA = 1.5, Re = 1290); (c) case C, (RA = 2.5, Re = 1010); and (d) case D, (RA = 2.5, Re = 2200).
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FIG. 4. Axial velocity profiles of the cylindrical cavity flow obtained with an R = 50 lattice: (a) case A, (RA = 1.5, Re = 990); (b) case
B, (RA = 1.5, Re = 1290); (c) case C, (RA = 2.5, Re = 1010); and (d) case D, (RA = 2.5, Re = 2200).

axisymmetric LB model more complicated, the cylindrical
cavity flow has been widely used for the evaluation of various
axisymmetric LB models [7,9,10,14,52]. In addition, reference
solutions from other methods, such as conventional NS solvers
[53], the 3D LB method [53], the LB flux solver [52], and even
an experimental method [54], are available for comparison
with the present test. However, quantitative comparisons
suggest that previous published results are not consistent with
each other and thus the results from the spectral element

method (SEM), which is acknowledged to have high-order
accuracy, are introduced as the reference solutions. It should
be noted that all the LB simulations of the present test in
this work converges to the SEM results when enough mesh
resolution is employed.

With the proposed incompressible models, four test cases
in terms of (RA,Re) are investigated: A, (1.5, 990); B, (1.5,
1290); C, (2.5, 1010); and D, (2.5, 2200). The steady results
for all the cases are obtained with a mesh resolution of

TABLE I. Mass differences caused by the proposed incompressible axisymmetric models in the cylindrical cavity flow test.

Present model based on Li et al. [7] Present model based on Zhou [9]

Grid Re = 990 Re = 1290 Re = 1010 Re = 2200 Re = 990 Re = 1290 Re = 1010 Re = 2200

R = 50 1.47 × 10–7 1.57 × 10–7 1.03 × 10–7 1.60 × 10–7 2.40 × 10–7 2.17 × 10–7 1.77 × 10–7 1.45 × 10–7

R = 100 2.47 × 10–8 2.80 × 10–8 1.68 × 10–8 9.12 × 10–10 5.51 × 10–8 5.35 × 10–8 3.83 × 10–8 3.42 × 10–8
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TABLE II. Compressibility errors caused by the Li et al. [7] model and its derivative incompressible model.

Present model based on Li et al. [7] Li et al. [7]

Grid Re = 990 Re = 1290 Re = 1010 Re = 2200 Re = 990 Re = 1290 Re = 1010 Re = 2200

R = 50 3.09 × 10–4 3.33 × 10–4 1.77 × 10–4 2.22 × 10–4 3.82 × 10–4 4.11 × 10–4 2.26 × 10–4 2.73 × 10–4

R = 100 1.17 × 10–4 1.31 × 10–4 6.82 × 10–5 1.02 × 10–4 1.48 × 10–4 1.67 × 10–4 8.73 × 10–5 1.22 × 10–4

R = 100 (i.e., R is divided into 100 lattices with δx and δt

being dimensionless constants equal to 1) and the relevant
flow structures are displayed in Fig. 2. In particular, for each
plot, the streamlines on the left half are results from the
incompressible model based on the Li et al. model [7] and the
right half is obtained from the incompressible model derived
from the Zhou model [9]. The symmetric structures with
respect to the vertical centerline in Fig. 2 reflect the consistency
between the results from the proposed incompressible models
with different origins. Also, the recirculation regions (i.e., the
breakdown bubble) along the symmetry axis are not found
for lower Re cases, as demonstrated in Figs. 2(a) and 2(c),
whereas with the increase of Re one single breakdown bubble
appears in case B and two bubbles develop in case D. All the
detailed flow configurations shown in Fig. 2 are in line with
published results [7,9,10,14,52,53]. Furthermore, quantitative
comparisons with the SEM results are performed in terms of
the axial velocity component (uz/u0) profile at the symmetry
axis, as exhibited in Fig. 3. It is demonstrated that, under
the current mesh resolution of R = 100 (i.e., R is divided
into 100 lattices), all the results from the LB simulations are
consistent with each other and agree well with the reference
solutions, which affirms the reliability of the proposed models.
Moreover, further comparisons of the accuracy of the proposed
incompressible models are carried out with a lower mesh
resolution of R = 50 (i.e., R is divided into 50 lattices), as
illustrated in Fig. 4. Figure 4 shows that results from the
incompressible model based the Li et al. model [7] are slightly
more accurate in terms of better agreement with the SEM for
the first two test cases, which may be a direct consequence of
the simplified implementation of the source terms in Ref. [9].
Specifically, for the Zhou model [9], the discrete lattice effects
cannot be removed completely by the semi-implicit centered
scheme in Eq. (29b) and the expressions of the force term
are incomplete in comparison with those in Ref. [7] [i.e.,
Eq. (55c)].

With the present test case, the mass conservation of the
proposed incompressible models, i.e., the consistency with
the incompressibility conditions, is also investigated. The mass
difference is introduced to evaluate the difference between the
fluid density in the numerical simulations and the assumed

constant density ρ0 = 1. An average fluid density ρ̄ is defined
as

ρ̄ =
∑

i,j |M0(i,j )|
NrNz

, (74)

where M0 = ∑
α fα is the fluid density obtained from nu-

merical simulations and the mass difference is determined as
�ρ = ρ̄ − 1. The mass differences pertaining to all the test
cases are provided in Table I, which shows that, even for
the lower mesh resolution, the mass differences from the two
incompressible models are less than 2.5 × 10–7, which is far
less than the global errors given in Fig. 1(b). Moreover, the
mass differences from the proposed model based on that of Li
et al. [7] are generally less than those in the incompressible
model derived from the Zhou model [9].

The compressibility error, which can also be used to gauge
the accuracy of the models, is defined as

Ecompress =
∑

i,j

∣∣ ∂(rur )
∂r

+ ∂(ruz)
∂z

∣∣
NrNz

. (75)

Tables II and III present the compressibility errors associated
with the incompressible models based on those of Li et al.
[7] and Zhou [9], respectively. The compressibility errors
caused by the Li et al. [7] model and the Zhou [9] model are
effectively reduced by the respective incompressible models.
Quantitatively, the compressibility errors by the original
models are approximately 20% larger than the corresponding
incompressible models. Therefore, by comparing either the
mass difference or compressibility error, incompressibility
conditions are consistently more accurately satisfied by the
proposed incompressible models.

Furthermore, comparisons of the numerical stability of
the proposed incompressible axisymmetric models, in the
absence and presence of the additional relaxation term, are
given in Table IV. It is demonstrated that the incompressible
models with the BGK collision operator (i.e., ωJ = ωf ) suffer
from poor numerical stability and convergent results cannot
be obtained for Re > 400 at a mesh resolution of R = 100.
However, the additional relaxation term makes the proposed
models more widely applicable by significantly improving the
numerical stability. In particular, with ωJ = 1, the effects

TABLE III. Compressibility errors caused by the Zhou [9] model and its derivative incompressible model. Blank entry signifies not
convergent.

Present model based on Zhou [9] Zhou [9]

Grid Re = 990 Re = 1290 Re = 1010 Re = 2200 Re = 990 Re = 1290 Re = 1010 Re = 2200

R = 50 3.22 × 10–4 3.45 × 10–4 1.86 × 10–4 2.21 × 10–4 3.96 × 10–4 4.22 × 10–4 2.39 × 10–4

R = 100 1.24 × 10–4 1.38 × 10–4 7.28 × 10–5 9.55 × 10–5 1.45 × 10–4 1.62 × 10–4 8.49 × 10–5 1.40 × 10–4
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TABLE IV. Maximum Re of the convergent simulations based on the incompressible axisymmetric LB model.

Incompressible model based on Incompressible model
the Li et al. [7] model based on the Zhou [9] model

Parameters BGK (ωJ = ωf ) ωJ = 1.0 ωJ = 0.9 BGK (ωJ = ωf ) ωJ = 1.0

R = 100,RA = 1.5 400 2300 2700 400 2800
R = 100,RA = 2.5 400 2000 2300 400 2800

of the ghost variable J are completely removed and the
incompressible axisymmetric model based on the Zhou [9]
model can provide convergent results up to Re = 2800 at the
same grid resolution. Moreover, Table IV indicates that further
decreasing the additional relaxation parameter ωJ (note that
0 < ωJ < 2) from 1.0 to 0.9 increases the Re range over which
the incompressible axisymmetric model based on the Li et al.
[7] model remains numerically stable.

3. Natural convection in an annulus between two coaxial
vertical cylinders

Two more thermal tests are investigated to further verify the
proposed incompressible LB models. In particular, the effect of
the temperature distribution on the velocity fields is considered

r / R

z /
 R

-2 -1 0 1 2
0

0.5

1

1.5

2(a)

(b)

(c)
r / R

z /
 R

-2 -1 0 1 2
0

0.5

1

1.5

2

r / R

z /
 R

-2 -1 0 1 2
0

0.5

1

1.5

2

FIG. 5. Streamlines for the natural convection in an annulus at
Pr = 0.7 and (a) Ra = 103, (b) Ra = 104, and (c) Ra = 105.

by invoking the Boussinesq approximation, which leads to
an additional external force term related to the temperature
differences

ρaz = −ρgβ(T − Tm). (76)

Here g and β are the gravitational acceleration and thermal-
expansion coefficient, respectively, T − Tm denotes the tem-
perature difference, and Tm is the adopted reference tempera-
ture.

Here the natural convection in an annulus between two
coaxial vertical cylinders is considered. The geometry of
the annulus is such that the radii for the inner and outer
cylinders are Ri and Ro, respectively, and H is the height
of the annulus. The relationship between these geometric
dimensions is applied Ro/Ri = H/(Ro − Ri) = 2. As for the
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FIG. 6. Isotherms for the natural convection in an annulus at Pr =
0.7 and (a) Ra = 103, (b) Ra = 104, and (c) Ra = 105.
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TABLE V. Average Nusselt numbers for the natural convection in a cylindrical annulus. Blank entry signifies not available.

LB simulations Reference results

Present model based Present model based
Ra on Li et al. [7] Zhou [9] Li et al. [7] Zhou [9] Ref. [29] Ref. [55]

103 1.692 1.692 1.692 1.692 1.692
104 3.217 3.218 3.213 3.218 3.215 3.163
105 5.781 5.789 5.756 5.785 5.787 5.882

boundary conditions, no-slip conditions are applied on all
four walls for the velocity field and constant temperatures
of Ti and To (Ti > To) are fixed at the inner and outer
cylindrical surfaces, respectively, while the top and bottom
walls are insulated (i.e., ∂T /∂z = 0). In addition, the reference
temperature in Eq. (76) is set at Tm = (Ti + To)/2. The flow
structure depends on two dimensionless parameters, namely,
the Prandtl number Pr = ν/α and the Rayleigh number Ra =
gβ(Ti − To)(Ro − Ri)3/αν. In this work, results for the test
cases with a constant Pr = 0.7 and Ra = 103, 104, and 105

are obtained from the two proposed incompressible models
with a mesh resolution of Ro − Ri = 100. Flow structures and
temperature distributions for the test cases are demonstrated,
respectively, in Figs. 5 and 6. Similar to Fig. 2, the left half
and right half present the results from the proposed model
based, respectively, on the Li et al. and Zhou models [7,9]. The
symmetric distribution of the streamlines and the isotherms
with respect to the vertical centerline (i.e., the symmetry axis)
reflects the consistency of the two proposed incompressible
models. Moreover, the detailed flow structures from the present
models agree well with the published results [29] in that, with
the increase of the Rayleigh number Ra, the flow structures
become more complicated and the temperature distributions
are more confined to the region near the cylindrical surfaces.
The above phenomena can be attributed to the enhanced

r / R

z /
 H

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

r / R

z /
 H

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a)

(b)

FIG. 7. (a) Azimuthal velocity contours and (b) isotherms for the
case of Ri = 0.

convection as a result of a larger driven force associated with
the increased Ra.

The surface-averaged Nusselt numbers on the cylindrical
wall is also employed for quantitative comparisons

Nui = − Ri

H (Ti − To)

∫ H

0

∂T

∂r

∣∣∣∣
i

dz, (77a)

Nuo = − Ro

H (Ti − To)

∫ H

0

∂T

∂r

∣∣∣∣
o

dz. (77b)

The average Nusselt numbers Nu = (Nui + Nuo)/2 for the test
cases are tabulated in Table V. The quantitative parameters
from the two proposed models exactly agree with each other
and are consistent with their respective original models [7,9]
and reference results based on the Zhou model with the MRT
collision operator [29] and the direct NS solutions [55], which
again demonstrates the reliability and accuracy of the present
incompressible models.

4. Swirling thermal flows in a cylindrical cavity

The thermal rotating flow in a cylindrical cavity under
constant temperature difference is simulated with the proposed
incompressible models. The aspect ratio of the cavity H/R

is set at 1, where H and R are, respectively, the height
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FIG. 8. (a) Azimuthal velocity contours and (b) isotherms for the
case of Ri = 1.
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FIG. 9. Profiles of velocity components (a) ur/u0, (b) uz/u0, (c) uθ/u0, and (d) dimensionless temperature T ∗ at r/R = 0.8 for the case of
Ri = 0.

and radius of the cylindrical cavity. The top lid rotates with
a constant angular velocity � and the rest of the solid
walls are stationary. In addition, constant temperatures of
Th and Tc (Th > Tc) are fixed at the top and bottom walls,
respectively, while the vertical cylindrical wall is insulated
(i.e., ∂T /∂r = 0). Dimensionless parameters involved in the
present test are defined as Pr = ν/α, Re = �R2/ν, and the
Richardson number Ri = gβ(Th − Tc)/R�2. Test cases for
constant Pr = 1.0 and Re = 2000, and Ri = 0 and 1 are,
respectively, considered with mesh resolutions of R = 100
and R = 150.

Contours for the azimuthal velocity and the isotherms are
demonstrated for Ri = 0 (Fig. 7) and Ri = 1 (Fig. 8). The
effect of the enhanced buoyancy force when Ri switches from
0 to 1 is such that the distribution of the azimuthal velocity
becomes more confined in the vicinity of the top lid [Fig. 8(a)]
and the isotherms in the lower half of the cavity become
more horizontal [Fig. 8(b)]. The present distributions of the
azimuthal velocity and temperature are consistent with the
published results [29,56]. Moreover, the velocity components

(namely, ur/u0, uz/u0, and uθ/u0) and the dimensionless
temperature T ∗ profiles at r = 0.8R are given for the cases of
Ri = 0 and 1, respectively in Figs. 9 and 10. The dimensionless
temperature is defined as T ∗ = (T − Tm)/(Th − Tc), whereby
Tm = (Th + Tc)/2. All the quantitative results from the LB
simulations with the proposed incompressible models agree
well with the reference solutions [56]. In addition, for the
Ri = 1 case shown in Fig. 10, approximate linear distributions
of all the macroscopic variables at the lower half of the cavity
are demonstrated, which is consistent with the flow patterns
given in Fig. 8.

III. CONCLUSION

In this work, two incompressible LB models for axisym-
metric flows were proposed based on two efficient top-down
axisymmetric models, namely, the Li et al. [7] and Zhou [9]
models. The proposed models are consistent with the basic
framework of the conventional LB method and retain the
advantages in the existing models [7,9] in that the source terms
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FIG. 10. Profiles of velocity components (a) ur/u0, (b) uz/u0, (c) uθ/u0, and (d) dimensionless temperature T ∗ at r/R = 0.8 for the case
of Ri = 1.

are simple and contain no gradient calculations. Specifically,
the incompressibility conditions were introduced by modify-
ing the moment equations of the original models with the
assumption of a constant fluid density. The expressions of the
equilibrium distribution function and the source terms, as well
as the computing formulas of the macroscopic variables, were
then derived from the modified moments. In particular, the
fluid pressure was determined by the second-order moment of
the general distribution function, as derived in Appendix D.
In addition, an extra relaxation term was added to reduce the
effect of the ghost variables, thereby the numerical stability
was efficiently improved.

It was demonstrated from the Chapman-Enskog analysis
that the proposed incompressible axisymmetric LB models
approximate the standard NS equations for incompressible
flows with the same accuracy as their respective original
models. Moreover, the equivalent moment system in the
diffusive scaling, proposed by Junk [39], further indicates
that the constant density assumption in the present models

is definitely helpful in reducing the compressibility errors,
which was also verified in the tests on practical systems.
Furthermore, the overall accuracy and the applicability of the
present incompressible models were demonstrated by the well-
acknowledged numerical tests since excellent agreement with
the reference solutions were obtained. Therefore, both models
developed here were shown to be effective for describing
incompressible axisymmetric flows.

ACKNOWLEDGMENTS

We are grateful for financial support from the National
Research Foundation, Prime Minister’s Office, Singapore
under its Campus for Research Excellence and Technological
Enterprise program. This work was also financially supported
by the National Natural Science Foundation of China (Grant
No. 11572062) and the Program for Changjiang Scholars
and Innovative Research Team in University (Grant No.
IRT13043).

023302-16



CONSISTENT LATTICE BOLTZMANN METHODS FOR . . . PHYSICAL REVIEW E 94, 023302 (2016)

APPENDIX A

The Chapman-Enskog expansion adopted in previous work [7–9,28] is introduced as

ε = δt, fα = f (0)
α + εf (1)

α + ε2f (2)
α ,

∂

∂t
= ∂

∂t0
+ ε

∂

∂t1
, (A1)

with ε = δt being the expansion parameters. In Ref. [7], the source term is also expanded as

Sα = S(0)
α + εS(1)

α , S(0)
α = −ur

r
f (eq)

α , S(1)
α = −2τur (ξαr − ur )

r2
f (eq)

α . (A2)

Then the Taylor expansion of Eq. (5) is obtained as

δt

(
∂

∂t
+ ξαi

∂

∂xi

)
fα + δt2

2

(
∂

∂t
+ ξαi

∂

∂xi

)2

fα = − 1

τ

(
fα − f (eq)

α

) − δtξαr

r

(
fα − f (eq)

α

) − δt

2τ

(
∂

∂t
+ ξαi

∂

∂xi

)

× (
fα − f (eq)

α

) + δtSα + δt2

2

(
∂

∂t
+ ξαi

∂

∂xi

)
Sα. (A3)

Substituting the expansions in Eqs. (A1) and (A2) into Eq. (A3) we have, for ε0, ε1, and ε2, respectively,

f (0)
α = f (eq)

α , (A4a)(
∂

∂t0
+ ξαi

∂

∂xi

)
f (0)

α = − 1

τ
f (1)

α + S(0)
α , (A4b)

∂

∂t1
f (0)

α +
(

∂

∂t0
+ ξαi

∂

∂xi

)
f (1)

α + 1

τ
f (2)

α = S(1)
α − ξαr

r
f (1)

α . (A4c)

The leading-order moments of Eq. (A4b) are obtained as

∂

∂t0

∑
α

f (0)
α + ∂

∂xi

∑
α

f (0)
α ξαi =

∑
α

S(0)
α , (A5a)

∂

∂t0

∑
α

f (0)
α ξαi + ∂

∂xj

∑
α

f (0)
α ξαiξαj =

∑
α

S(0)
α ξαi, (A5b)

∂

∂t0

∑
α

f (0)
α ξαiξαj + ∂

∂xl

∑
α

f (0)
α ξαiξαj ξαl = − 1

τ

∑
α

f (1)
α ξαiξαj +

∑
α

S(0)
α ξαiξαj (A5c)

and the moments of Eq. (A4c) are

∂

∂t1

∑
α

f (0)
α = 0, (A6a)

∂

∂t1

∑
α

f (0)
α ξαi + ∂

∂xj

∑
α

f (1)
α ξαiξαj =

∑
α

S(1)
α ξαi − 1

r

∑
α

f (1)
α ξαiξαr . (A6b)

Substituting the moment equations prescribed in Eq. (12) into Eq. (A5), we obtain

∂

∂t0
ρ + ∂

∂xi

(ρui) = −ρur

r
, (A7a)

∂

∂t0
(ρui) + ∂

∂xj

(ρuiuj + pδij ) = −ρuiur

r
, (A7b)

∂

∂t0
(ρuiuj + pδij ) + ∂

∂xl

[ρRT (uiδjl + ujδil + ulδij )] = − 1

τ

∑
α

f (1)
α ξαiξαj − ur

r
(ρuiuj + pδij ), (A7c)

which leads to ∑
α

f (1)
α ξαiξαj = −τ

[
ρRT

(
∂ui

∂xj

+ ∂uj

∂xi

)
− ∂(ρuiujuk)

xk

]
= −τρRT

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ O(Ma3). (A8)

Then Eqs. (A6a) and (A6b) are rewritten as

∂

∂t1
ρ = 0, (A9a)
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∂

∂t1
(ρui) − ∂

∂xj

[
τρRT

(
∂ui

∂xj

+ ∂uj

∂xi

)]
= −2τρRT ur

r2
δir + τ

r
ρRT

(
∂ui

∂r
+ ∂ur

∂xi

)
. (A9b)

Combining Eqs. (A7a) and (A7b) with Eqs. (A9a) and (A9b), respectively, the macroscopic equations pertaining to the Li et al.
[7] model are obtained as

∂

∂t
ρ + ∂

∂xi

(ρui) = −ρur

r
, (A10a)

∂

∂t
(ρui) + ∂

∂xj

(ρuiuj + pδij ) + ρuiur

r
= ∂

∂xj

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ μ

r

(
∂ui

∂r
+ ∂ur

∂xi

)
− 2μur

r2
δir + O(Ma3), (A10b)

with the dynamic viscosity μ = τρRT δt .
Similarly, applying the modified moment equations (46) to Eqs. (A5) and (A6), the moments of the expanded equations for

the relevant incompressible model are derived as

∂

∂t0
ρ0 + ∂

∂xi

(ρ0ui) = −ρ0ur

r
, (A11a)

∂

∂t0
(ρ0ui) + ∂

∂xj

(ρ0uiuj + pδij ) = −ρ0uiur

r
, (A11b)

∂

∂t0
(ρ0uiuj + pδij ) + ∂

∂xl

[ρ0RT (uiδjl + ujδil + ulδij )] = − 1

τ

∑
α

f (1)
α ξαiξαj − ρ0ur

r
RT δij (A11c)

and
∂

∂t1
ρ0 = 0, (A12a)

∂

∂t1
(ρ0ui) + ∂

∂xj

∑
α

f (1)
α ξαiξαj = −2τρ0RT ur

r2
δir − 1

r

∑
α

f (1)
α ξαiξαr . (A12b)

Neglecting the terms of high order in Mach number Ma, we have

∑
α

f (1)
α ξαiξαj = −τ

[
ρ0RT

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ ∂

∂t0
(ρ0uiuj + pδij )

]
= −τρ0RT

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ O(Ma2) (A13)

and the resulting macroscopic equations are

∂ui

∂xi

+ ur

r
= 0, (A14a)

∂

∂t
(ρ0ui) + ∂

∂xj

(ρ0uiuj + pδij ) + ρ0uiur

r
= ∂

∂xj

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ μ

r

(
∂ui

∂r
+ ∂ur

∂xi

)
− 2μur

r2
δir + O(Ma2), (A14b)

which demonstrates that the standard incompressible NS equations for axisymmetric flows can be recovered from the proposed
model with second-order accuracy in Ma. In contrast, the macroscopic equations recovered from the Li et al. [7] model, i.e.,
Eq. (A10), are compressible with truncation errors of third order in Ma. However, as claimed by Dellar [57], the solutions of
Eq. (A10), derived from the standard LB model, approximate the solutions of the incompressible NS equations with errors of
O(Ma2). Thereby, the compressibility errors arising from the proposed incompressible model and the original Li et al. [7] model
are of the same order. Further analysis on this issue is provided in Appendix C by applying the equivalent moment system
proposed by Junk [39] based on the NS scale.

APPENDIX B

A similar Chapman-Enskog analysis procedure is applied to the Zhou [9] model. In particular, the source terms based on the
centered scheme are expanded as

θ (x + ξαδt/2,t + δt/2) = θ (x,t) + ε

2

(
∂

∂t
+ ξαi

∂

∂xi

)
θ (x,t) + O(ε2), (B1a)

Fi(x + ξαδt/2,t + δt/2) = Fi(x,t) + ε

2

(
∂

∂t
+ ξαi

∂

∂xi

)
Fi(x,t) + O(ε2). (B1b)
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Then the LB equation in Ref. [9] is expanded as, for ε0, ε1, and ε2, respectively,

f (0)
α = f (eq)

α , (B2a)(
∂

∂t0
+ ξαi

∂

∂xi

)
f (0)

α = − 1

τ
f (1)

α + wαθ + wα

RT
Fiξαi, (B2b)

∂

∂t1
f (0)

α +
(

1 − 1

2τ

)(
∂

∂t0
+ ξαi

∂

∂xi

)
f (1)

α = − 1

τ
f (2)

α − (2τ − 1)ξαr

2τr
f (1)

α . (B2c)

With the moment equations pertaining to the conventional standard LB model, i.e., Eq. (12), moments of above expanded
equations are obtained as

∂

∂t0
ρ + ∂

∂xi

(ρui) = −ρur

r
, (B3a)

∂

∂t0
(ρui) + ∂

∂xj

(ρuiuj + pδij ) = Fi, (B3b)

∂

∂t0
(ρuiuj + pδij ) + ∂

∂xl

[ρRT (uiδjl + ujδil + ulδij )] = − 1

τ

∑
α

f (1)
α ξαiξαj + θRT δij , (B3c)

∂

∂t1
ρ = 0, (B4a)

∂

∂t1
(ρui) +

(
1 − 1

2τ

)
∂

∂xj

∑
α

f (1)
α ξαiξαj = −2τ − 1

2τr

∑
α

f (1)
α ξαiξαr . (B4b)

The unknown moment in Eq. (B4b) is derived from Eq. (B3) as∑
α

f (1)
α ξαiξαj = −τ

[
ρRT

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ (Fiuj + Fjui)

]
, (B5)

where the extra term is a direct result of the simplified forcing source term wα

RT
Fiξαi , which excludes the second-order terms in

contrast with the force expression in Eq. (55c). With the definition of Fi in the Zhou [9] model Fi = − ρuiur

r
− 2μur

r2 δir , the extra
term is one order smaller than O(Ma2) and can be neglected. Therefore, the macroscopic equations recovered from Ref. [9] are

∂

∂t
ρ + ∂

∂xi

(ρui) = −ρur

r
, (B6a)

∂

∂t
(ρui) + ∂

∂xj

(ρuiuj + pδij ) = ∂

∂xj

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ μ

r

(
∂ui

∂r
+ ∂ur

∂xi

)
+ Fi, (B6b)

where the dynamic viscosity is defined as μ = ρ(τ − 1
2 )RT δt . Again, the standard NS equations for incompressible axisymmetric

flows can also be obtained by applying the modified moments in Eq. (46) to Eq. (B2).

APPENDIX C

In order to investigate the relationship between the LB
equation and the incompressible NS equation, the NS scale
(i.e., diffusive scale), which is distinct from the Boltzmann
equation (BE) scale, was applied by Junk [39]. In both cases,
the physical length L is adopted as the representative space
scale, but the velocity scales differ in that the lattice speed
c, which relates to the sound speed cs by cs = c/

√
3, is the

typical speed for the BE scale, whereas the macroscopic speed
U serves as the velocity scale in the NS scale. Under the
incompressible limit, the Mach number Ma = U/cs satisfies
the relationship [39,58]

U/cs ∼ U/c = ε ∼ δx/L. (C1)

As a direct consequence of Eq. (C1), the representative time
of the BE scale TBE = L/c is one order ε smaller than that of
the NS scale TNS = L/U , i.e., TBE = εTNS. Thus, the scaled
time step �t = δt/T and spatial step �x = δx/L for these
two scales have the relationships

�tBE = δt

TBE
= δx

L
= �x, (C2a)

�tNS = δt

TNS
= ε

δt

TBE
= ε

δx

L
= �x2. (C2b)

In the following, with the scaled quantities of x̃ = x/L,
eα = ξα/c, and t̃ = t/TNS and scaled distribution function
of f̃α(x̃,eα,t̃) = fα(Lx̃,ξα,TNS t̃), the scaled density function
ρ̃ and scaled velocity function ũ = u/ε can be analogously
defined (with ε = U/c and c = 1 in the present work), Thus,
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the scaled LB equation is obtained as

f̃α(x̃ + εeα,eα,t̃ + ε2) − f̃α(x̃,eα,t̃)

= − 1

τ

[
f̃α(x̃,eα,t̃) − f̃ (eq)

α (ρ̃(x̃,t̃),εũ(x̃,t̃); eα)
]
. (C3)

It should be noted that the complicated source terms ac-
counting for the axisymmetric condition can be excluded in
the present analysis since they would not affect the overall
truncation error terms. Eliminating the tildes, the LB equation
in the diffusion scaling (i.e., �t = �x2 = ε2) is given as

fα(x + eα�x,eα,t + �t) − fα(x,eα,t)

= − 1

τ
[fα(x,eα,t) − f (eq)

α (ρ(x,t),εu(x,t); eα)]. (C4)

Applying Taylor expansion around �t = �x = 0 and neglect-
ing the terms of order ε2 and higher, we have

∂fα

∂t
+ eαk

ε

∂fα

∂xk

= − 1

ε2τ

(
fα − f (eq)

α

) + 1

2
eαkeαl

∂2fα

∂xk∂xl

+ 1

ετ
eαk

∂

∂xk

(
fα − f (eq)

α

)

+ 1

3
εeαkeαleαm

∂3fα

∂xk∂xl∂xm

, (C5)

which is referred to as the modified Boltzmann equation
and differs from the standard Boltzmann equation under the
diffusive scaling

∂fα

∂t
+ eαk

ε

∂fα

∂xk

= − 1

ε2τ

(
fα − f (eq)

α

)
. (C6)

In order to transform Eq. (C5) to the equivalent moment
systems, which is closer to the NS equations, a transformation
matrix composed of nine scaled velocity polynomials is
introduced as [39]

Q = (Q0,Q1, . . . ,Q8)†, (C7)

where the dagger denotes the transpose operation and the
specific basis vectors Qi(eα) are given as

Q0(eα) = 1, (C8a)

Q1(eα) = eαx/ε, (C8b)

Q2(eα) = eαy/ε, (C8c)

Q3(eα) = (e2
αx − 1

3 )/ε2, (C8d)

Q4(eα) = eαxeαy/ε
2, (C8e)

Q5(eα) = (e2
αy − 1

3 )/ε2, (C8f)

Q6(eα) = (3|eα|2 − 4)eαx/ε
3, (C8g)

Q7(eα) = (3|eα|2 − 4)eαy/ε
3, (C8h)

Q8(eα) = (9|eα|4 − 15|eα|2 + 2)/ε4. (C8i)

Similar to the basis given by Eqs. (48) and (49), the velocity
polynomials are mutually orthogonal with respect to wα , i.e.,

〈Qi(eα)Qj (eα)wα〉 =
∑

α

Qi(eα)Qj (eα)wα = 0 for i �= j.

(C9)

Then a linear invertible mapping from the distribution function
space to the relevant moment space |f 〉 → M is defined as

M = Q|f 〉 = (〈Q0f 〉,〈Q1f 〉, . . . ,〈Q8f 〉)†, (C10a)

|f 〉 = Q−1 M =
8∑

j=0

MjQj (eα)

〈Q2
j (eα)wα〉wα, (C10b)

where |f 〉 = (f0,f1, . . . ,f8)† and M = (M0,M1, . . . ,M8)†

are the distribution function and moment column vector,
respectively. With the transformation defined in Eq. (C10a),
the moment equations pertaining to the standard Boltzmann
equation [i.e., Eq. (C6)] are obtained as

∂

∂t
M0 + ∂

∂x
M1 + ∂

∂y
M2 = 0, (C11a)

∂

∂t
M1+ ∂

∂x
M3 + ∂

∂y
M4+ 1

3ε2

∂

∂x
M0 = 0, (C11b)

∂

∂t
M2+ ∂

∂x
M4+ ∂

∂y
M5 + 1

3ε2

∂

∂y
M0 = 0, (C11c)

∂

∂t
M3 + 2

3ε2

∂

∂x
M1 + 1

3

∂

∂y
M7 = − 1

ε2τ

(
M3−M

(eq)
3

)
,

(C11d)

∂

∂t
M4 + 1

3ε2

(
∂

∂x
M2 + ∂

∂y
M1

)

+1

3

(
∂

∂x
M7 + ∂

∂y
M6

)
= − 1

ε2τ

(
M4−M

(eq)
4

)
,

(C11e)

∂

∂t
M5 + 2

3ε2

∂

∂y
M2 + 1

3

∂

∂x
M6 = − 1

ε2τ

(
M5−M

(eq)
5

)
.

(C11f)

The difference term between Eqs. (C5) and (C6),

δ = 1

2
eαkeαl

∂2fα

∂xk∂xl

+ 1

ετ
eαk

∂

∂xk

(
fα − f (eq)

α

)

+ 1

3
εeαkeαleαm

∂3fα

∂xk∂xl∂xm

, (C12)

leads to the following variations of the moment system in
Eq. (C11):

δM0 = 1

6

(
∂2

∂x2
+ ∂2

∂y2

)
M0 + O(ε2), (C13a)

δM1 = 1

τ

(
∂

∂x
M

(neq)
3 + ∂

∂y
M

(neq)
4

)
+ 1

6
�M1

+ 1

3

∂

∂x

(
∂

∂x
M1 + ∂

∂y
M2

)

+ 1

9

∂

∂x
(�M0) + O(ε2), (C13b)
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δM2 = 1

τ

(
∂

∂x
M

(neq)
4 + ∂

∂y
M

(neq)
5

)
+ 1

6
�M2 + 1

3

∂

∂y

(
∂

∂x
M1 + ∂

∂y
M2

)
+ 1

9

∂

∂y
(�M0) + O(ε2), (C13c)

δM3 = 1

3τ

∂

∂y
M

(neq)
7 + 1

9ε2

∂2

∂x2
M0, (C13d)

δM4 = 1

3τ

(
∂

∂x
M

(neq)
7 + ∂

∂y
M

(neq)
6

)
+ 1

9ε2

∂2

∂x∂y
M0, (C13e)

δM5 = 1

3τ

∂

∂x
M

(neq)
6 + 1

9ε2

∂2

∂y2
M0. (C13f)

Neglecting the terms of order ε2 and higher, the evolution equations for the first three moment components, i.e., the equivalent
moment system pertaining to the LB equation in diffusive scale, are derived as

∂

∂t
M0 + ∂

∂x
M1 + ∂

∂y
M2 = 1

6
�M0, (C14a)

∂

∂t
M1 + ∂

∂x
M

(eq)
3 + ∂

∂y
M

(eq)
4 + 1

3ε2

∂

∂x
M0 = 1

3

(
τ − 1

2

)
�M1 + τ

3

∂

∂x

(
∂

∂x
M1 + ∂

∂y
M2

)
+ 2 − τ

9

∂

∂x
(�M0), (C14b)

∂

∂t
M2 + ∂

∂x
M

(eq)
4 + ∂

∂y
M

(eq)
5 + 1

3ε2

∂

∂y
M0 = 1

3

(
τ − 1

2

)
�M2 + τ

3

∂

∂y

(
∂

∂x
M1 + ∂

∂y
M2

)
+ 2 − τ

9

∂

∂y
(�M0). (C14c)

Applying the moment relationships for the standard LB method, the macroscopic equations are obtained as

∂

∂t
ρ + ∇ · (ρu) = 1

6
�ρ, (C15a)

∂

∂t
(ρu) + ∇ · (ρuu) + 1

3ε2
∇ρ = 1

3

(
τ − 1

2

)
�(ρu) + τ

3
∇[∇ · (ρu)] + 2 − τ

9
∇(�ρ). (C15b)

Introducing the order one function p, the density is decom-
posed as ρ = ρ̄(1 + 3ε2p), where ρ̄ > 0 is the constant part.
Thus, Eq. (C15) is rewritten as

∇ · u = 1

6
�(3ε2p), (C16a)

∂

∂t
u + ∇ · (uu)+∇p = 1

3

(
τ−1

2

)
�u + 2 − τ

9
∇[�(3ε2p)].

(C16b)

However, with the constant density assumption, the macro-
scopic equations pertaining to the proposed models are

∇ · u = 0, (C17a)

∂

∂t
u + ∇ · (uu) + 1

ρ0
∇p = 1

3

(
τ − 1

2

)
�u. (C17b)

Therefore, conclusions can be drawn from the present equiv-
alent moment system based on the diffusive (NS) scaling
that (i) the overall truncation errors of the LB equation in
recovering the incompressible NS equation is second order
in Ma (ε2) and (ii) the constant density assumption in the
proposed incompressible models has the advantage of reducing
the compressibility errors, as shown in the comparison between
Eqs. (C15) and (C16) for the standard model and Eq. (C17)
for the proposed incompressible models.

APPENDIX D

The deviations of the computing formulas for the fluid
pressure in the proposed models are provided in this appendix.
Combining the modified second-order moments of the equi-
librium distribution function and the results from the above
Chapman-Enskog analysis, the second-order moment of the
general distribution function is defined as∑

α

fαξαiξαj =
∑

α

(
f (eq)

α + f (neq)
α

)
ξαiξαj

=
∑

α

(
f (0)

α + δtf (1)
α

)
ξαiξαj + O(δt2). (D1)

Substituting the moments of f (1)
α for the proposed models,

the second-order moment of the nonequilibrium part of the
distribution is determined as

∑
α

f (neq)
α ξαiξαj = −τρ0RT

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (D2)

Taking into account the definition of the reconstructed distri-
bution function in Ref. [7]

f̂α = fα − δt

2
(�α + Sα),

we have

fα = f̂α + δt

2
(�α + Sα) (D3)
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and

∑
α

(
f (eq)

α + f (neq)
α

)
ξαiξαj

=
∑

α

f̂αξαiξαj − 1

2τ

∑
α

f (neq)
α ξαiξαj + δt

2

∑
α

Sαξαiξαj .

(D4)

Applying the modified moments in Eq. (46) and the moment
constraints in Eq. (D2), the fluid pressure in the incompressible
model based on the Li et al. model [7] is determined as

p =
(∑

α

f̂αξαiξαi − (2τ + 2)δtρ0RT
ur

r
− ρ0u2

)/
2,

(D5)

which is directly derived from the diagonal part of Eq. (D4).
As for the incompressible model pertaining to the Zhou model
[9], the computing formula of the fluid pressure is directly
obtained from Eq. (D1),∑

α

fαξαiξαj = ρ0uiuj + pδij − τρ0RT

(
∂ui

∂xj

+ ∂uj

∂xi

)
,

(D6)
which leads to

∑
α

fαξαiξαi = ρ0uiui + pδii − 2τρ0RT
∂ui

∂xi

, (D7)

p =
(∑

α

fαξαiξαi − 2τδtρ0RT
ur

r
− ρ0u2

)/
2. (D8)
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