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Microwave-assisted one-step green synthesis
of amino-functionalized fluorescent carbon
nitride dots from chitosan
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ABSTRACT: We present an economical, facile and effective microwave pyrolysis approach to synthesize highly amino-
functionalized fluorescent carbon nitride dots (CNDs). The formation and the functionalization of CNDs was accomplished
simultaneously through the dehydration of chitosan. It is suggested that these CNDs have good water solublility and exhibit
strong fluorescence. Copyright © 2013 John Wiley & Sons, Ltd.
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Introduction

In recent years, fluorescent semiconductor quantum dots (QDs)
have been a common subject of academic research because of
their unique optical and biochemical features (1-6). However,
the use of heavy metals, which are essential elements in these
conventional semiconductors, is restricted because of concerns
about their toxicity, stability and environmental impact (8,7).
Therefore, the fabricatation of benign nanomaterials with similar
optical properties is an interesting challenge inspiring intensive
research. In recent years, a new type of visible emitter has been
reported, based exclusively on carbon dots (CDs) (9-12) or carbon
nitride dots (CNDs) (13,14). CDs and CNDs seem to be a promising
alternative to traditional toxic metal-based semiconductor QDs in
many fields of applications due to their stable photoluminescence
(PL), strong fluorescence, broad excitation spectra, tunable
emission spectra, low cytotoxicity and excellent biocompatibility.

Approaches to synthesizing eco-friendly fluorescent CDs or
CNDs can be generally classified into two main groups: top-down
and bottom-up (15). Top-down methods are used to etch a larger
carbon structure into individual nanoparticles, such as arc-
discharge single-walled carbon nanotubes (16), laser ablation of
graphite (9), electrochemical oxidation of graphite and multi-
walled carbon nanotubes (17,18), carbonizing polymerized resols
on silica spheres (19), chemical oxidation soots of candles, natural
gas, commercially activated carbon and lampblack (20-22) and
chemical oxidation of oxide graphene (23). By contrast, bottom-
up methods are used to form nanoparticles from molecular
precursors, such as chemical and thermal oxidation or in the
microwave pyrolysis of carbonaceous compounds (14,24-28).
However, most of these synthesis methods involve expensive
starting materials, devices that consume a great deal of energy,
intricate processes, and the as-synthesized CDs or CNDs are
typically oxidized by strong acid and further surface-passivated
by a diamine-terminated organic molecule to improve the water
solubility of the CNDs and modify the PL properties. Therefore,
building an economical, facile, effective and green synthetic route
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to produce strong fluorescent CDs or CNDs on a large scale for
practical application remains critical.

Herein, we present an economical, facile and effective
microwave pyrolysis approach for the synthesis of highly amino-
functionalized fluorescent CNDs. A characteristic feature of this
one-step approach is that the formation and the functionaliza-
tion of CNDs was accomplished simultaneously through the
dehydration of chitosan; neither a strong acid solvent nor surface
modification reagent is needed. The synthetic process occurs in a
domestic microwave oven using inexpensive chitosan as the
carbon source and has the advantage of being inexpensive and
completely ‘green’.

Experimental

Preparation of fluorescent CNDs

In a typical procedure, amino-functionalized fluorescent CNDs
were synthesized as follows: 0.5g chitosan was dissolved in
10 mL water to form a homogeneous solution, which was then
put into a domestic microwave oven (700W) and heated for
9.5min. The color-changed solution was centrifuged at
13,000 rpm for 30 min to remove the less-fluorescent deposit,
and dialyzed against pure water through a dialysis membrane for
4 days to remove residual chitosan. Finally, amino-functionalized
fluorescent CNDs were dried in a vacuum at 65 °C overnight.
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Characterization methods

UV-vis absorption was characterized using a UV1800 UV-vis
spectrophotometer (Shimadzu Corporation, Japan). PL emission
measurements were performed using a RF-5301PC fluorescence
spectrophotometer (Shimadzu Corporation). The morphology of
the as-synthesized nanoparticles was studied using a FEI Tecnai
G2F20 transmission electron microscope (TEM). Elemental
analysis was carried out using an Elementar Vario ELIIl. The
surface groups on CNDs were measured with a 8400s FT-IR
spectrometer (Shimadzu Corporation). X-Ray photoelectron
spectroscopy (XPS) analysis was measured on an ESCALAB MK-II
X-ray photoelectron spectrometer.

Quantum yield measurements

The quantum yield (®) of CNDs was measured by comparing the
integrated PL intensities and the absorbency values against the
reference quinine sulfate (QS). QS (literature ®=0.54) was
dissolved in 0.1 M H,SO, (refractive index, 7, of 1.33) and the
CNDs were dissolved in distilled water (n=1.33).
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where @ is the quantum yield, / is the measured integrated
emission intensity, 7 is the refractive index and A is the optical
density. The subscript R refers to the reference fluorophore of
known quantum yield.

Results and discussion

As shown in Scheme 1, in a typical procedure, amino-functionalized
fluorescent CNDs were synthesized as follows: an appropriate
amount of chitosan was dissolved in water to form a homogeneous
solution, which was then put into a domestic microwave oven
(700 W) and heated for different lengths of time. The color-changed
solution was centrifuged and dialyzed to remove less-fluorescent
deposit and residual chitosan. Finally, a clear yellow-brown
aqueous solution containing CNDs was obtained. The yield of
fluorescent CNDs is ~6.4% and the sample shows good water
solubility. Experiments revealed that the solubility of the CNDs
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reached 60 mg/mL in water and there was no precipitation for
months. Our preparation method presents a facile approach to
producing highly amino-functionalized fluorescent CNDs on a
large scale. The functional groups on its surface improve its water
solubility and reduce its potential biotoxicity, which is essential
for biologically motivated work.

Figure 1 depicts the UV-vis absorption and PL spectra for
CNDs. The first absorption band was observed at 282 nm. When
it was excited at 338 nm, the PL spectra showed a peak position
at 440 nm, a 158 nm red shift from the first absorption peak. In
addition, the fluorescent intensity gradually decreased with
increasing excitation wavelength. Such an observation is similar
to that of carbon dots, which may be attributed to the optical
selectivity of differently sized nanoparticles (quantum effect)
or different emissive traps on the CND surface or another
mechanism altogether. In addition, abundant functional groups,
such as carboxyl acids and amines, which are introduced
simultaneously during the microwave pyrolysis, may introduce
different defects onto the surface of CNDs, acting as excitation
energy traps and leading to different PL properties.

The fluorescence quantum yield of CNDs is ~ 6.4% when the
microwave pyrolysis time is 9.5min with QS as a standard
reference (Table S1). These values are comparable with previous
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Figure 1. UV-vis absorption spectra and PL spectra for CNDs.
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Scheme 1. A schematic illustration of the prepration procedure of CNDs by microwave pyrolysis of chitosan.
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reports (13,29). Table S2 shows the PL quantum yield of CNDs for
various microwave pyrolysis times. It can be seen that the PL
quantum yield increased sharply when microwave pyrolysis time
varied from 3.5 to 9.5 min, which indicated that the formation of
CNDs is very fast and facile.

The TEM image (Fig. 2) showed that the nanoparticles were
monodispersed and uniform with a spherical shape. The as-
prepared CNDs were well dispersed in narrow distributions of
46+19nm diameter with a microwave pyrolysis time of
9.5min. As the time increased to 11.5 min, the diameter of the
CNDs increased slightly and an aggregate phenomenon was
observed. Thus, a microwave pyrolysis time of 9.5min was
chosen in the subsequent study. The chemical composition of
these nanoparticles was further determined by collecting the
corresponding energy-dispersed spectroscopy (EDS) results, as
shown in Fig. S1. Peaks of C, N and O are observed, indicating
that these nanoparticles are formed by chitosan and H,O.
Furthermore, peaks of F, S, Si and Cu are also observed, which
originate from the glass substrate used for EDS analysis.
Elemental analysis indicated that the composition of the CNDs
was: C, 34.93 wt%; N, 6.43 wt%; H, 6.97 wt% and O, 51.67 wt%.
It was found that after microwave carbonization the carbon
and nitrogen content of the CNDs increased, which was mainly
due to the loss of oxygen and hydrogen during dehydration of
the chitosan (Table S3). The surface composition and elemental
analysis for the overall composition of the resultant nanoparticles
were characterized using XPS techniques. The XPS spectrum of the
nanoparticles shown in Figs S2-S5 exhibited three peaks at 285,
401 and 532eV, which were attributed to Cl1s, N1s and OfTs,
respectively. All these results indicated that the nanoparticles
thus obtained were mainly composed of C, N, O and H.

As shown in Fig. 3, Fourier transform infrared (FT-IR) measure-
ments of pure chitosan powder showed that the peaks at
3447 cm™" were attributed to O-H and N-H stretching vibrations
of amine groups. The peaks at 1644cm™ and 1593cm’
corresponded to N-H bending vibrations. For the CNDs, the
result showed an increase in absorption of the amino group
at 1634cm™ compared with chitosan. C-H vibrations at
1130-1064 cm™" associated with the pyranose were almost lost.
These distinctions may be caused by degradation of the chitosan
chain and decomposition of the pyranose ring through
dehydration. Similar results are also reported in the literature
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Figure 3. FT-IR spectrum of (a) pure chitosan, (b) fluorescent CNDs.

(27). The zeta-potential measurements showed that the surface
of the CNDs has the amine groups because it is positive
when the pH was < 6.6, suggesting that microwave pyrolysis of
chitosan was an effective way to obtain amino-functionalized
fluorescent CNDs.

Moreover, the impact of pH and ionic strength on the
fluorescence intensity of CNDs was investigated (Fig. S6). The
results indicated that the fluorescence intensity of CNDs
changed slightly when the solution pH varied from 5.3 to 7.7,
and even in an aqueous solution with a high ionic strength the
fluorescence intensity of the CNDs was stable. These phenomena
show the potential of the fluorescent CNDs to be good candidates
for biological applications.

Conclusions

In conclusion, fluorescent CNDs were prepared by microwave
pyrolysis derived from chitosan. The synthesized CNDs showed
some benign properties such as higher PL efficiencies (6.4%),
monodispersity and small diameter (4.6 + 1.9 nm). In comparison
with previous methods, this one-step ‘green’ process has no need
for strong acid treatment or surface modification. In particular, the
as-prepared CNDs exhibit excellent stability in biological media,
and their luminescence intensity is also stable within the
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Figure 2. TEM images and their size distributions for CNDs with different microwave pyrolysis time of (a) 9.5 min and (b) 11.5 min; scale bars: 50 nm.
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physiological and pathological ranges for ionic strength or pH.
The strong fluorescence and excellent water dispersion can be
attributed to the abundant surface traps and functional groups.
Combing their low cytotoxicity, low cost, green method of synthesis,
ease of labeling and favorable optical properties, CNDs provide
promising applications in biological labeling and biosensors.

SUPPORTING INFORMATION

Supporting information may be found in the online version of
this article.
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